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Urban mapping techniques using high spectral and spatial resolution (HSSR)

data were investigated. To this aim, this paper proposes a novel mean shift (MS)-

based multiscale method, and different spatial approaches are compared,

including differential morphological profiles (DMPs), pixel shape index (PSI),

the fractal net evolution approach (FNEA), and the proposed MS method. These

spatial features were computed based on a dimensionally reduced representation

that was obtained using the non-negative matrix factorization (NMF) transform.

The support vector machine (SVM) was then used for classification. These

algorithms were evaluated using two HSSR datasets that were obtained by using

the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over the

urban area of Pavia, northern Italy. The results show that the spatial approaches

can effectively complement the spectral features for urban mapping, and the

proposed MS-based multiscale algorithm can give comparable or even better

results than the FNEA, DMPs and other traditional algorithms.

1. Introduction

In recent years, high spectral and spatial resolution (HSSR) data have become

available, and such data provide both detailed structural and spectral information.

Most of the recent efforts for land cover/land use mapping in urban areas are related

to HSSR imagery. Dell’Acqua et al. (2004) compared two spatial analysis

techniques, the fuzzy ARTMAP with spatial reclassification (Gamba and

Dell’Acqua 2003) and differential morphological profiles (DMPs) for urban

mapping using HSSR data. In their experiments, improvements were obtained in

terms of classification accuracies compared to pure spectral analysis of the dataset.

Gamba et al. (2007) proposed an effective mapping procedure exploiting object

boundaries, where the boundary and non-boundary pixels were classified separately

and then geometrical constraints were enforced to tune the boundary map. The final

result was obtained by fusing the two refined maps at the decision level. Akcay and

Aksoy (2008) presented a novel method for automatic object detection in HSSR

imagery by combining spectral information with structural information exploited by

using image segmentation. Benediktsson et al. (2005) proposed a derivative of the

DMPs for preprocessing of HSSR data. The DMPs were constructed based on the

repeated use of openings and closings with a structuring element of increasing size.

The morphological profiles were built based on several principal components and
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then classified using neural networks. The DMP approach can be extended by

applying data fusion to the original data and the morphological information, after

feature extraction. Some notable studies on the combination of spectral–

morphological information have been provided by Joelsson et al. (2005),

Palmason et al. (2006) and Fauvel et al. (2007).

Recent studies show that the exploitation of spatial information is necessary for

classification of HSSR imagery, but few such approaches have been proposed

(Benediktsson et al. 2005). The objective of this research was to propose a new

spatial approach for urban mapping and undertake a comparative analysis with

some traditional algorithms. In this study, the spatial approaches used can be

divided into two categories. One is the spectral–spatial vector stacking method,

including the pixel shape index (PSI) (Huang et al. 2007a) and the grey level co-

occurrence matrix (GLCM). The two methods exploit the structural and shape

information in the images to complement the spectral feature space. The other

approach comprises multiscale techniques, including the fractal net evolution

approach (FNEA) object-based analysis, the DMPs and the proposed mean shift

(MS)-based approach. These multiscale approaches can effectively exploit the rich

spatial information to extract objects with different shapes and sizes, and they have

been applied successfully to very high resolution (VHR) imagery (Bruzzone and

Carlin 2006, Huang et al. 2007b). The FNEA, embedded in the commercial software

eCognition, is an object-based approach that has been proven to be more efficient

than pixel-based methods for VHR image processing in many studies (Wang et al.

2004, Gao et al. 2006, Yu et al. 2006). The DMP algorithm has been used to extract

multiscale structural features from HSSR data (Benediktsson et al. 2005, Joelsson

et al. 2005, Palmason et al. 2006, Fauvel et al. 2007), and thus it is used as a

benchmark to evaluate other algorithms. In this study, a novel multiscale MS

analysis approach is proposed that computes the multiscale representation of HSSR

data by using different spatial bandwidths. Among the aforementioned algorithms,

both the PSI and the FNEA have been applied to VHR data classification (Wang et al.

2004, Huang et al. 2007a) but, to the best of our knowledge, they have not yet been

applied to HSSR images. Therefore, it is worthwhile evaluating the performance of the

PSI, the FNEA and the proposed multiscale MS approach for urban mapping using

HSSR data.

Flow charts of the two spatial approaches are shown in figure 1, where (a) is the

vector stacking approach and (b) shows the multiscale procedures. It is necessary to

reduce the computation load for HSSR data when spectral and spatial information

are considered at the same time. Principal component analysis (PCA) is a commonly

used dimension reduction method and has been tested for HSSR data in some

studies (Dell’Acqua et al. 2004, Benediktsson et al. 2005). In this research, the non-

negative matrix factorization (NMF) algorithm (Lee and Seung 1999) was used to

obtain characteristic images from the hyperspectral data because the NMF is

distinguished from other methods by its use of non-negativity constraints. This is in

contrast to other methods, such as PCA and vector quantization (VQ), that learn

holistic, not parts-based, representations (Lee and Seung 1999). In the experiments,

the performance of the NMF transform was evaluated and compared with the PCA

and another data transform approach, the decision boundary feature extraction

(DBFE), developed by Lee and Landgrebe (1993). After the spectral and spatial

feature extraction steps, the support vector machine (SVM; Cortes and Vapnik 1995)

was used to classify the spectral–spatial hybrid features as it is intrinsically less
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sensitive to the high dimensionality of feature space, and is a non-parametric pattern

recognition tool.

The rest of the paper is organized as follows: sections 2 and 3 describe the

spectral–spatial vector stacking algorithms and the multiscale approaches, respec-

tively. Section 4 concerns the analysis and comparison of the experimental results

and in section 5 we present our conclusions.

2. Spectral–spatial feature stacking algorithms

2.1 Grey level co-occurrence matrix (GLCM)

The GLCM has been a standard technique for extracting texture features. It

describes the second-order statistical relationships of two pixels in an image by the

joint probability density function. In this research, GLCM texture statistics were

calculated based on the NMF characteristic images with an interpixel distance of 1

and with different window sizes. The directionality of the GLCM was suppressed by

averaging the extracted features over four directions, and the following four

commonly used measures were chosen for the co-occurrence matrix:

Homogeneity: HOM~
X

i

X

j

P i, jð Þ
1z i{jð Þ2

ð1Þ

Angular second moment: ASM~
X

i

X

j

P i, jð Þð Þ2 ð2Þ

Entropy: ENT~{
X

i

X

j

P i, jð Þlog P i, jð Þð Þ ð3Þ

Figure 1. The flow charts of the two spatial approaches for urban mapping using the HSSR
data: (a) the vector stacking, and (b) the multiscale approach.
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Dissimilarity: DIS~{
X

i

X

j

P i, jð Þ i{jj j ð4Þ

where (i, j) are the coordinates in the co-occurrence matrix space and P(i, j) is the co-

occurrence matrix value at (i, j). Homogeneity is a measure of lack of variability or

the amount of local similarity, and the angular second moment is also a measure of

local homogeneity. Entropy and dissimilarity are heterogeneity indices. Entropy is a

measure of the degree of disorder in an image, while dissimilarity represents the

degree of spread of the grey levels or the average grey level difference between

neighbouring pixels. Dissimilarity and homogeneity are inversely correlated.

2.2 Pixel shape index (PSI)

The PSI is an efficient spatial feature index for urban mapping with high spatial

resolution (Huang et al. 2007a). PSI values are found by searching along a

predetermined number of equally spaced lines radiating from the central pixel,

namely direction lines. The extension of direction lines is based on the neighbouring

grey level similarity in different directions. Upon completion of the calculation of all

the direction lines, the direction-line histogram for each pixel x can be defined as,

H xð Þ~ d1 xð Þ, . . . , dn xð Þ, . . . , dN xð Þf g ð5Þ

where N is the number of direction lines for each pixel (N520 in this paper) and dn(x)

denotes the length of the nth direction line for pixel x. The shape index is the sum of

lengths of all the direction lines, which is written as:

PSI xð Þ~
XN

n~1

di xð Þ ð6Þ

In the previous literature, the PSI was considered as an additional feature band to

complement the inadequacy of spectral information and hence improve the

classification performance of VHR images (Zhang et al. 2006, Huang et al.

2007a). In this study, the PSI-NMF feature stacking approach was used for the

HSSR data. The hybrid feature set can be written as NMFbf gB
b~1zPSI where NMFb

represents the NMF-based spectral information at band b.

3. Multiscale classification approach

3.1 Mean shift (MS)-based multiscale classification algorithm

The MS procedure is a non-parametric density estimation technique, and its

theoretical framework is the Parzen window-based kernel density estimation

(Fukunaga and Hostetler 1975). Given n data points xi (i51, …, n) in d-dimensional

space, the kernel density estimator at point x can be written as:

f̂h, K xð Þ~ ck, d

nhd

Xn

i~1

k
x{xi

h

���
���

2
� �

ð7Þ

where ck,d is a normalization constant, h is the bandwidth, and k(?) is the kernel profile

that models how strongly the data points are taken into account for the estimation. The

key step in the feature space analysis is to find the local maxima of the density f(x), that

is the modes of the density that are located among the zeros of the gradient ,f(x)50.
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The MS procedure is an efficient way to locate these zeros without estimating the

density (Comaniciu and Meer 2002). The density gradient estimator can be obtained by

differentiating equation (7) and decomposing into two product terms:

+̂fh, K xð Þ~ 2

h2c
f̂h, G xð Þmh, G xð Þ ð8Þ

where g(x)52k9(x) is the profile of kernel G with cg,d its normalization parameter and c

the normalization constant c~
cg, d

ck, d
. In this equation, the first term f̂h, G xð Þ is the density

estimate at x with the kernel G, and the second term is the mean shift:

mh, G xð Þ~
P

n
i~1xi g x{xi

h

�� ��2
� �

P
n
i~1g x{xi

h

�� ��2
� � {x ð9Þ

It can be found that the MS is the difference between the weighted mean, using the

kernel G for weights, and x, the centre of the kernel. The MS is an efficient spatial

feature extraction approach that is capable of delineating arbitrarily shaped clusters

because of its nonparametric nature. This characteristic has found MS a potential

segmentation and clustering tool for high-resolution remote sensing data. This study

presents a multiscale MS-based classification approach for HSSR imagery, which

consists of the following steps:

Step 1. Use the NMF transform to reduce the dimension of the original

hyperspectral data because it can avoid the empty space phenomenon by which most

of the mass in a high-Dimensional space is concentrated in a small region of the

space. The characteristic images are written as NMFbf gB
b~1.

Step 2. Define a set of bandwidths {hm:1(m(M} and run the mean shift

segmentation algorithm (Comaniciu and Meer 2002). The multiscale representations

of the NMF images can then be obtained by the mean shift procedures with different

bandwidths. After the multiscale segmentation, the mean grey values of each

segment are used to represent the features of each pixel in different scales. Therefore,

the multiscale feature set is defined as f m
b : 0ƒmƒM

� �
where f 0

b ~NMFb

representing the feature of the pixel level.

Step 3. Compute the multiscale features for all the characteristic images and the

multiscale MS-based feature set can be described as f ~ fbf gB
b~1 with fb~ f m

b

� �M

m~1
.

Step 4. The multiscale approach always leads to high-dimensional feature space,

especially for HSSR data. Therefore, the SVM classifier, which is less sensitive to the

high dimensionality of the feature space, is used to interpret the feature set f.

3.2 Differential morphological profiles (DMPs)

Opening and closing are two commonly used morphological operators. They are

applied to an image with a set of a known shape, called the structuring element (SE).

For features with regular shapes that are lighter/darker than the background, the

basic approach is to apply openings/closings of increasing sizes. Benediktsson et al.

(2005) proposed the DMPs that record image structural information. The structural

information is collected by applying opening and closing operators with a multiscale

approach and by looking at the residues between the multiscale morphologically

transformed image and the original one.

Let cs and Qs be the morphological opening and closing operators by

reconstruction with structural element SE5s. MPc and MPQ are the opening and
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closing profiles, respectively, of the image I, and they are defined as vectors

MPc~ MPcs
: MPcs

~cs Ið Þ, s [ 0, S½ �
� �

MPQ~ MPQs
: MPQs

~Qs Ið Þ, s [ 0, S½ �
� � ð10Þ

where MPc05MPQ05I. The DMPs are defined as a vector where the measures of the

slope of the opening–closing profiles are stored for every step of an increasing SE

series:

DMPl~ DMPls
: DMPls

~ MPls
{MPls{1

j j, l [ c, Q½ �, s [ 1, S½ �f g ð11Þ

The DMP algorithm has been successfully applied to classification of both VHR

(Benediktsson et al. 2003) and HSSR (Benediktsson et al. 2005) urban remote

sensing data. It is worth noting that in the previous literature, DMPs were

implemented on several principal component images that always led to high-

dimensional feature space; therefore, some dimension reduction techniques were

used for the morphological profiles. However, in this study, DMPs are built on the

NMF images and a dimension-insensitive classifier, SVM, is used for DMP features

without dimension reduction.

3.3 Fractal net evolution approach (FNEA)-based multiscale object-based approach

For high-resolution images, the increase in intraclass spectral variation may cause a

reduction of statistical separability between classes with traditional pixel-based

classification approaches, and object-based classification may be a good alternative

(Yu et al. 2006). This is because the object-based approaches take advantage of the

rich amount of local spatial information present in the irregularly shaped objects in

images. The basic idea of this method is to group the spatially adjacent pixels into

spectrally homogeneous objects, and in theory this will reduce the local spectral

variation and the salt-and-pepper effect (Wang et al. 2004, Yu et al. 2006). Bruzzone

and Carlin (2006) proposed a multilevel context-based system for classification of

multispectral high-resolution images, where the FNEA segmentation algorithm

embedded in eCognition was used to achieve the multiscale object-based classifica-

tion. In this paper, this FNEA-based multilevel system is implemented on the HSSR

images.

The FNEA is a bottom-up region merging technique starting from a single pixel.

In an iterative way, adjacent objects are merged into new larger segments at each

subsequent step. The region merging decision is defined as the heterogeneity

difference between the new object and the constituent objects,

DH~
XB

b~1

Wb Nmergedmerge{ Nobj1dobj1zNobj2dobj2

� 	
 �
ð12Þ

where Wb controls the weight of band b (1(b(B), Nmerge, Nobj1 and Nobj2 represent

the number of pixels within the merged object, object 1 and object 2, respectively.

dmerge, dobj1 and dobj2 are the corresponding standard deviations. When a possible

merge of a pair of image objects is examined, the merge is performed when the

criteria index ,H is smaller than the scale parameter T (i.e. ,H(T). The

segmentation process stops as soon as this condition is not met by any possible

merge. The multiscale object-based representations can then be obtained by the

FNEA segmentation with increasing values for T.
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4. Experiments and analysis

4.1 Experimental data and parameter setting

The HSSR data used in this study were collected in the framework of the HySens

project, managed by DLR (the German Aerospace Centre) and sponsored by the

European Union. The images were acquired by the Reflective Optics System

Imaging Spectrometer (ROSIS) sensor during a flight campaign over Pavia, northern

Italy (45u119 N, 9u99 E), on 8 July 2002 from 10:30 to 12:00 h. Hyperspectral channels

were collected in the 0.43–0.86 mm region of the visible and infrared spectrum with

1.3 m spatial resolution. Two datasets are used for evaluation of different algorithms.

One is the Pavia city centre, with dense buildings, open areas and the river Ticino.

The other is around the Engineering School at the University of Pavia. Some

channels were removed because of noise; hence, the number of spectral bands was

102 for the ‘Centre’ data and 103 for the ‘University’.

The parameters for the spatial approaches in the experiments are detailed as

follows:

GLCM: the four measures (equations (1) to (4)) were combined with the spectral

features in an SVM classifier. In the experiments, six window sizes were used: 363,

565, 767, 969, 11611 and 13613.

MS: the bandwidths were set to h5{0, 5, 10, 15, 20}, with h50 representing the

pixel level, and the bandwidths were selected according to the spatial resolution and

the object characteristics in the scene.

DMPs: the extended MPs use three characteristic bands (B53) and are based on a

disc structuring element, a step of 2 with four openings and four closings (the

number of openings/closings is written as NOC). The morphological profiles were

then combined with the spectral bands, leading to a 27-dimensional (27-D) feature

vector for NOC54.

FNEA: the scale parameters were set to T5{0, 5, 7, 10, 15} for FNEA

segmentation with T50 representing the pixel level. Note that for a fair comparison

between MS and FNEA, their scale parameters should lead to similar average

segment sizes (the average number of pixels for each segment).

4.2 Experiments for the Pavia centre dataset

The colour composite image of the Pavia centre data is shown in figure 2(a), with

channel 82 for red, 46 for green and 9 for blue. The Pavia centre image was originally

109661096 pixels. A 381-pixel-wide black strip was removed, resulting in a ‘two-

part’ 10966715 image (figure 2). The 3-D NMF characteristic image is shown in

figure 2(b), and the reference map is provided in figure 2(c). The numbers of training

and test samples are listed in table 1. The training and test samples and the reference

data were provided by the University of Pavia.

Figure 3 shows the hyperspectral signatures of different classes for the Pavia centre

data. It can be seen that although the hyperspectral bands are available, some classes

are still spectrally similar because they are made of similar materials. The spectrally

confused or similar class pairs include water–shadow, asphalt–bitumen, tree–

meadows, and brick–tiles–bare soil (BS). Therefore, the spatial information is

exploited to complement the spectral feature space. Improvements in mapping

accuracies can be expected when shape, texture and spatial coherence are considered

or integrated with the spectral features.
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The class-specific accuracies for different spectral features are listed in table 2. It

can be seen that the NMF characteristic images gave 95.6% overall accuracy (OA),

higher than the original 102-D hyperspectral data (94.8%) and the 29-D DBFE

features (94.5%), which showed that the NMF transform was efficient to represent

the hyperspectral data although only 3-D features were extracted. The accuracies of

different spatial approaches are provided in table 3, where the accuracy of the

GLCM was obtained using a 13613 window size as it resulted in the highest

accuracy among all the windows tested. The 21-D and 27-D DMPs were produced

by NOC53 and NOC54, respectively. The first comment on table 3 is that the

proposed multiscale MS approach achieved the same and the highest OA with the

27-D DMPs (98.4%). This is a promising result considering that only 15-D features

are available for the MS approach. From table 3 it can also be seen that: (1) all the

spatial approaches (GLCM, PSI, DMPs, FNEA and MS) outperformed the spectral

approaches (hyperspectral, DBFE, NMF), verifying the necessity of the exploitation

of spatial information for HSSR data classification; (2) the multiscale algorithms

gave higher accuracies than the feature stacking approaches. This phenomenon

shows that the multiscale approach is a better spectral–spatial classification method

and it can extract the rich spectral and spatial information from HSSR data more

(a) (b) (c)

Figure 2. (a) The RGB image for the Pavia centre dataset, (b) 3-D NMF bands, and (c) the
reference map provided by the University of Pavia.

Table 1. The training and test samples for the Pavia centre data.

Class No. of training sets No. of test sets

Water 824 65 971
Trees 820 7598
Asphalt 816 9248
Bricks 808 2685
Bitumen 808 7287
Tiles 1260 42 826
Shadow 476 2863
Meadows 824 3090
Bare soil 820 6584

Total 7456 148 152
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effectively; and (3) all the multiscale algorithms gave satisfactory OAs (97.4% for

FNEA, 97.9% and 98.4% for DMPs with NOC53 and 4, respectively, and 98.4% for
MS); in addition, they gave comparable and better class-specific accuracies for most

of the classes compared with the purely spectral method.

Some classification maps with their subsamples are presented in figure 4. This

figure shows that the spatial approaches can provide more accurate results for both

quantitative statistics and visual inspection. The DMPs and MS algorithms avoided

the salt-and-pepper effect in the pixel-level classification and they showed

improvements in homogeneous regions such as roofs, shadows and roads.

Figure 4(d) shows that some shadow pixels were wrongly identified as water for

27-D DMPs, and the same errors also occurred for 21-D DMPs. However, we did
not observe the misclassification in the MS-based mapping. This phenomenon

reveals that the multiscale MS algorithm can describe the shape and border more

Figure 3. The 102-channel spectral signatures of different classes for the Pavia centre data.

Table 2. The class-specific accuracies (%) of different spectral feature sets for the Pavia centre
data.

Feature

Hyperspectral DBFE NMF

102-D 29-D 3-D

Water 92.1 91.5 98.6
Trees 92.9 92.0 79.0
Asphalt 93.7 94.4 94.9
Bricks 90.0 86.7 77.7
Bitumen 96.5 96.4 83.9
Tiles 99.3 99.3 98.7
Shadow 92.5 92.3 99.8
Meadows 98.3 97.7 90.9
Bare soil 96.0 95.6 86.5

OA (%) 94.8 94.5 95.6
Kappa 0.928 0.926 0.938
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regularly and accurately, and it verifies the advantage of the MS approach for

clustering with arbitrary shapes and textures.

To evaluate the proposed algorithms, the results of some existing approaches are

reported in table 4, including (1) the spectral–morphological integration method

(Palmason et al. 2006), which combines the spectral principal components and

Table 3. Class-specific accuracies (%) of different spatial feature sets for the Pavia centre data.

Class

Spectral–spatial
feature stacking Multiscale method

GLCM
(7-D)

PSI
(4-D)

DMPs
(21-D)

DMPs
(27-D)

FNEA
(15-D)

MS
(15-D)

Water 99.4 99.1 99.0 99.1 98.5 99.1
Trees 89.6 81.8 87.9 89.4 86.5 88.6
Asphalt 91.4 94.8 97.5 99.3 97.9 99.5
Bricks 81.6 68.4 99.1 99.7 86.2 87.5
Bitumen 83.4 87.2 93.2 98.0 94.9 99.1
Tiles 99.3 99.0 99.3 99.4 99.7 99.3
Shadow 99.9 100.0 97.5 95.4 100.0 99.9
Meadows 89.2 91.3 91.0 91.0 95.0 98.6
Bare soil 89.2 88.8 99.2 99.8 90.2 97.7

OA 96.6 96.2 97.9 98.4 97.4 98.4

(a) (b)

(d )

(c)

Figure 4. The classification results for (a) the 102-D data (94.8%), (b) DMPs (98.4%), and (c)
the multiscale MS approach (98.4%). (d) Subsamples shown for a detailed comparison.
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DMPs (NOC54) using a neural network classifier (namely PCA-DMPs-NN), (2) the

random forest classification (Joelsson et al. 2005), which uses a collection of tree-like

classifier systems to analyse the hyperspectral data (namely RF-Hyperspectral) and

(3) the spectral and spatial classification using SVMs and morphological profiles

(namely spectral/spatial classifier) by Fauvel et al. (2007). The above approaches

provided satisfied OAs (97.0%, 96.9% and 98.2%, respectively) that were slightly

lower than those of the NMF-DMPs-SVM and the multiscale MS algorithms. By

comparing tables 3 and 4, it can be seen that (1) the NMF transform is suitable for

representing the HSSR data, and the SVM classifier is suitable for the

hyperdimensional morphological profiles; and (2) the proposed multiscale MS

algorithm is an efficient spectral–spatial classification approach in terms of the

higher accuracy compared with the existing algorithms.

4.3 Experiments for the University dataset

The colour composite image and the 3-D NMF features for the University data are

shown in figures 5(a) and 5(b). The reference map is provided in figure 5(c). The

numbers of training and test samples are listed in table 5.

The hyperspectral signatures of different classes for the University data are shown

in figure 6. It can be seen that the trees, shadow and metal sheets are easy to

distinguish because of their reflectance characteristics, while the hyperspectral curves

for bitumen–asphalt, gravel–brick and bare soil–meadows are very similar, and

therefore it is difficult to discriminate them using spectral information alone. The

accuracies for the spectral and spatial feature sets are listed in tables 6 and 7,

respectively, where ‘Ave’ denotes the averaged accuracy of all the information

classes. By analysing table 6, the 31-D DBFE features (99% criterion) gave the

highest accuracy (77.9%), and the NMF transform provided comparable OA with

the 103-D hyperspectral data (70.0% for NMF and 71.1% for hyperspectral data).

Considering that only 3-D NMF bands were used and significantly outperformed the

3-D PCA bands (64.2%), it can be concluded that the NMF transform is an efficient

dimensionality reduction algorithm for HSSR data. In table 7, the GLCM approach

was implemented by combining the NMF bands and the four texture measures in

equations (1) to (4). Three window sizes (969, 11611, 13613) were tested, and the

Table 4. Class-specific accuracies (%) of some existing algorithms for the Pavia Centre
dataset.

Class

Joelsson et al. 2005 Palmason et al. 2006 Fauvel et al. 2007

Random forest
Spectral–morphologi-

cal
Spectral–spatial classi-

fication

Water 99.3 99.8 99.2
Trees 89.6 82.4 90.1
Asphalt 94.1 95.6 97.8
Bricks 72.4 99.3 97.5
Bitumen 92.7 95.2 96.4
Tiles 97.8 96.4 99.3
Shadow 99.5 97.4 99.2
Meadows 97.5 94.4 91.7
Bare soil 87.5 92.0 96.1

OA 96.9 97.0 98.2
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overall accuracies were 76.9%, 76.6% and 76.4%, respectively, and thus the class-

specific accuracies of the 969 window are reported in the table. The first comment

on table 7 is that the 27-D DMPs gave the highest OA (89.3%), and the multiscale

MS obtained a comparable accuracy with the 21-D DMPs (82.7% and 83.9%,

respectively). Table 7 also shows that the multiscale MS approach achieved satisfied

averaged accuracy (90.4%), showing its ability for spectral–spatial information

extraction from objects with different sizes and scales. It should be noted that it

provided more accurate results than the spectral approach for all the classes except

bare soil. Especially for the classes of bitumen, bricks and gravel, the MS approach

gave obviously higher accuracies than other methods. The classification maps for

102-D hyperspectral data, 27-D DMPs and the 15-D multiscale MS algorithms are

shown in figure 7.

From the above experiments, it is clear that the spatial information can

complement the spectral feature space effectively and discriminate the classes with

similar spectral responses. The averaged accuracies of different approaches for the

three spectrally similar class pairs are listed in table 8. It can be seen that the

(a) (b) (c)

Figure 5. (a) The RGB image for the University dataset, (b) 3-D NMF bands, and (c) the
reference map provided by the University of Pavia.

Table 5. The training and test samples for the University data.

Class No. of training sets No. of test sets

Trees 524 3064
Asphalt 548 6631
Bitumen 375 1330
Gravel 392 2099
Metal sheets 265 1345
Shadow 231 947
Bricks 514 3682
Meadows 540 18 649
Bare soil 532 5029

Total 3921 42 776
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multiscale MS technique showed good discrimination ability for bitumen–asphalt

(94.5%) and gravel–brick (99.1%).

The experimental results were also compared with the two existing approaches: the

spectral–morphological integration method of Palmason et al. (2006) and the

spectral–spatial classification using SVMs and DMPs by Fauvel et al. (2007). Their

overall and averaged accuracies are listed in table 9. Comparing tables 7 and 9, it can

be seen that the multiscale MS approach gave higher averaged accuracy (90.4%)

although the spectral–morphological algorithm and the spectral–spatial classification

gave higher OA values. This observation shows that the MS algorithm is an efficient

spectral–spatial feature extraction approach for classes with different sizes and scales.

The two experiments show that the multiscale MS is similar to the DMP algorithm

in its essence, which has been proved by the comparable performance on the test sets.

Finally, the computational time for the two approaches was compared. The two

Figure 6. The 103-D spectral signatures of different classes for the University dataset.

Table 6. Class-specific accuracies (%) of different feature sets for the University data.

Feature

Hyperspectral DBFE PCA NMF

103-D 31-D 3-D 3-D

Asphalt 70.9 72.9 68.3 69.8
Bare soil 67.9 91.2 41.0 32.0
Bitumen 83.5 82.0 68.4 80.2
Bricks 93.1 82.2 92.9 84.9
Gravel 43.5 65.5 24.1 34.2
Metal 98.6 100.0 98.9 99.4
Meadows 61.0 71.4 57.7 72.4
Shadow 99.6 90.8 99.9 99.8
Trees 98.3 97.6 98.6 98.9

OA 71.1 77.9 64.2 70.0
Ave 79.6 83.7 72.2 74.6
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Table 7. Class-specific accuracies (%) of different spatial feature sets for the University data.

Class

Spectral–spatial
feature stacking Multiscale method

GLCM
(7-D)

PSI
(4-D)

DMPs
(21-D)

DMPs
(27-D)

FNEA
(15-D)

MS
(15-D)

Asphalt 80.1 80.4 79.9 93.6 75.8 90.3
Bare soil 49.1 54.0 57.0 64.9 35.4 50.2
Bitumen 67.5 71.3 93.8 97.1 94.4 98.6
Bricks 96.2 84.9 98.0 99.5 98.8 99.7
Gravel 43.4 58.1 72.5 77.0 65.5 98.4
Metal 99.9 99.5 99.7 99.7 99.1 99.8
Meadows 77.6 79.2 85.9 90.5 80.1 77.8
Shadow 92.3 97.8 98.2 98.2 99.8 99.6
Trees 99.7 99.0 99.5 98.5 98.7 98.8

OA 76.9 78.1 83.9 89.3 77.9 82.7
Ave 78.4 80.5 87.2 91.0 83.1 90.4

(a) (b) (c)

Figure 7. Classification maps for (a) the 103-D data (71.1%), (b) 27-D DMPs (89.3%), and
(c) the multiscale MS approach (82.7%).

Table 8. Averaged accuracies (%) for the spectrally similar class pairs.

Feature Bitumen–asphalt Gravel–brick Bare soil–meadows

103-D hyperspectral data 77.2 68.3 64.5
GLCM 73.8 69.8 63.4
PSI 75.9 71.5 66.6
21-D DMPs 86.9 85.3 71.5
27-D DMPs 95.3 88.3 77.7
Multiscale FNEA 87.6 82.2 57.8
Multiscale mean shift 94.5 99.1 64.0
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approaches were implemented on a Windows XP system with a 1.5 GHz processor

and 512 MB RAM. The DMP and MS algorithms were implemented based on

Matlab software, while the LIBSVM approach (www.csie.ntu.edu.tw/,cjlin/libsvm)

was used for the SVM classification. For the Pavia centre dataset (10966715), it

took 163 s to generate the 27-D DMPs, while the SVM-based classification took

349 s. However, the 15-D MS feature extraction took 179 s and the time for SVM

classification was 186 s. With respect to the University dataset (6106340), the 27-D

DMPs calculation and its SVM classification took 32 and 165 s, respectively, while

the CPU time for the 15-D MS extraction and classification was 52 and 99 s,

respectively. From the above statistics, we find that the MS calculation took more

CPU time than the DMPs, while the latter needs more computational time for

classification because of its higher dimensionality.

5. Conclusions

This paper studied the detailed urban mapping techniques using spatial approaches

based on HSSR imagery. The main contributions of this research are the following:

(1) a multiscale mean shift approach was proposed for analysis of HSSR data, and

the multiscale representations were obtained using different bandwidths; (2) the

performance of the NMF transform for dimensionality reduction of hyperspectral

data was evaluated; and (3) different spatial mapping approaches, including

spectral–spatial vector stacking (GLCM and PSI) and multiscale approaches

(FNEA, DMPs and MS), were compared and analysed for detailed urban mapping

using HSSR imagery.

All of the algorithms were implemented and evaluated on the two ROSIS

hyperspectral datasets over Pavia City, in northern Italy. By analysing the

experimental results, we reached the following conclusions:

(1) The NMF transform is feasible for hyperspectral data reduction especially

when the hyperdimensional data are transformed to a small-dimensional

feature space. This conclusion is based on the observations that 3-D NMF

features gave comparable or even higher accuracies than the 102-D

hyperspectral image and the 29-D DBFE in the Pavia Centre dataset, and

Table 9. Class-specific accuracies (%) of some existing algorithms for the Pavia University
dataset.

Class

Palmason et al. 2006 Fauvel et al. 2007

Spectral–morphological
Spectral–spatial classifica-

tion

Asphalt 88.3 90.9
Bare soil 48.2 85.3
Bitumen 90.5 95.2
Bricks 86.9 95.8
Gravel 52.2 57.9
Metal 98.7 99.5
Meadows 92.9 85.9
Shadow 92.6 95.1
Trees 98.5 99.2

Overall accuracy 85.6 88.0
Average accuracy 83.2 89.4

Urban mapping using ROSIS hyperspectral data 3219



they also gave comparable results to the 103-D hyperspectral data in the

University dataset.

(2) In all of the experiments, the spatial approaches provided more accurate

mapping than the spectral methods. It can be concluded that spatial

information is necessary to complement the spectral features for high-

resolution imagery although hyperspectral data are available. This is because

some different objects are made of similar materials with similar spectral

responses and the rich spatial information should be exploited to

discriminate them.

(3) The multiscale approaches (FNEA, DMPs and MS) outperformed the

feature stacking approaches (GLCM and PSI), demonstrating that the

multiscale techniques can extract the rich spectral–spatial information from

HSSR imagery more efficiently. For the multiscale approaches used in this

paper, the DMP algorithm proved to be successful for urban feature

extraction. In the experiments, four openings/closings (NOC54) gave higher

accuracies than three openings/closings (NOC53). We also found that the

SVM classifier is appropriate for the high-dimensional morphological

profiles because of its dimensionality-insensitive character, and the NMF

transform is a good alternative to produce basis images for morphological

profiles.

(4) The proposed multiscale MS approach achieved satisfactory results in both

experiments. In the Pavia centre dataset, it gave the same overall accuracy as

the 27-D DMPs, while in the University dataset, it gave a slightly higher

averaged accuracy than the 27-D DMPs. In addition, the multiscale MS

clearly outperformed the multilevel FNEA algorithm with similar para-

meters. Therefore, it can be concluded that the mean shift is a potential

analysis approach for spectral–spatial feature extraction.
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