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This paper develops a novel Markov Random Field (MRF) model for edge-preserving spatial regularization
of classification maps. MRF methods based on the uniform smoothness lead to oversmoothed solutions.
In contrast, MRF methods which take care of local spectral or gradient discontinuities, lead to unexpected
object particles around boundaries. To solve these key problems, our developed MRF method first estab-
lishes a spatial energy function integrating local spectral dissimilarity to smooth the initial classification
map while preserving object boundaries. Second, a new anisotropic spatial energy function integrating
the class co-occurrence dependency is constructed to regularize pixels around object boundaries. The
effectiveness of the method is tested using a series of remote sensing data sets. The obtained results indi-
cate that the method can avoid oversmoothing and significantly improve the classification accuracy with
regards to traditional MRF classification models and some other state-of-the-art methods.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Remote sensing image classification, which aims to classify a
remotely sensed image into a thematic map, is a very active
research field. As more and more images with higher spatial reso-
lution became available, advanced classification methods utilize
not only the spectral, but also the spatial properties in order to
improve classification accuracy. In this context, a large collection
of spectral-spatial classification methods (Benediktsson et al.,
2005; Blaschke, 2010; Chen et al., 2016; Huang et al., 2014; Li
et al., 2013; Zhang and Jia, 2012; Zhang et al., 2006) have been
proposed.

Representative spatial features include pixel shape index
(Zhang et al., 2006), extended morphological profiles
(Benediktsson et al., 2005) and extended morphological attribute
profiles (Dalla Mura et al., 2011), among many others (Cheng and
Han, 2016; Fauvel et al., 2013). Another group of spatial-spectral
methods is known as object-based image analysis (OBIA)
(Blaschke, 2010; Walter, 2004; Zheng et al., 2013), which utilizes
segments as basic units for extracting features. OBIA can suppress
the salt-and pepper noise that is often observed from pixelwise
classification results. Besides these hand-crafted spatial features,
features learnt automatically from input images, which are known
as deep learning-based methods (Chen et al., 2016, 2014; Hinton
and Salakhutdinov, 2006), became popular recently. These meth-
ods, typically convolutional neural network (Chen et al., 2016),
by simulating the processing of the primate visual system through
a deep hierarchy, can extract a series of low- and high-level fea-
tures. Both hand-crafted and learnt features make efforts on inte-
grating spatial information at feature extraction stage or during
the classification stage.

Recently, a number of works have developed strategies to inte-
grate the spatial information at the postprocessing stage, such as
relearning (Huang et al., 2014), object-based method
(Büschenfeld and Ostermann, 2012), filtering based method
(Kang et al., 2014), and Markov random fields (MRFs) (Aghighi
et al., 2014; Schindler, 2012; Tarabalka et al., 2010). These methods
generally rely on the common assumption that neighboring pixels
tend to belong to the same class.

Filtering methods impose a kernel on an initial label image
using a sliding window, and then assign each center pixel to an
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output value obtained according to the existing gray and/or label
values in the window. For instance, Kang et al. (2014) proposed
to use the guided filter to achieve edge-preserving smoothing of
the probabilistic map of an initial label image. Unfortunately, the
overall high accuracies are essentially achieved at the cost of over-
smoothed objected boundaries. Object-based methods
(Büschenfeld and Ostermann, 2012) conduct (weighted) majority
voting over each image object to determine the resulting class to
be assigned to the object. During the voting process, the initial
probabilities of labels and the distance from the current pixel to
the corresponding object border are considered. However, the
effectiveness of object-based voting is also influenced by the per-
formance of segmentation algorithms. More recently, Huang
et al. (2014) have presented a new concept of relearning to smooth
the initial classification result. The goal is achieved by iteratively
updating the initial result according to the frequency and spatial
arrangement of the class labels.

Some MRFs (Aghighi et al., 2014; Li et al., 2012; Moser et al.,
2013; Tarabalka et al., 2010) can also be seen as postprocessing
methods, as they utilize neighbor label information to produce
smoothing effects on initial classification results. Under the
MAP-MRF framework, this optimization is formulated as the min-
imization of the class posterior probability, which is equivalent to
minimizing an energy function comprising the feature and label
models (Li, 2009). The feature model is related to features used
in the classification, and is often initialized by the output of a spec-
tral feature-based pixelwise classification (Schindler, 2012;
Tarabalka et al., 2010). Meanwhile, the label model is related to
the spatial prior of classes, which is formulated as a MRF (Moser
et al., 2013). In contrast, without modeling the feature and label
models individually, alternative MRF methods can directly express
the class posterior probability as a MRF (Li, 2009; Zhang and Jia,
2012). This group of MRFs is also named as conditional random
fields (CRFs).

Therefore, both groups belong to the random field model
assumed to exhibit the Markov property, and use the probability
function to model the spatial interactions between image sites.
Both of them assumes that the class labels and/or feature levels
in a neighborhood of the image lattice do not change abruptly. It
has been demonstrated that, even with this simple spatial prior,
MRF methods can perform quite well in terms of improving classi-
fication accuracy (Huang et al., 2014; Schindler, 2012; Zhong and
Wang, 2010). However, this generic smoothness prior also lead
to oversmoothed solutions when effective, i.e., the class boundaries
do not align with real object boundaries (Schindler, 2012;
Tarabalka et al., 2010; Zhang and Jia, 2012). The main reason is that
the uniform smoothness assumption is often violated at the image
boundaries, where abrupt changes of pixel values occur. Therefore,
several works have established more complex spatial a priori mod-
els involving local discontinuities, such as the derivative magni-
tude (Tarabalka et al., 2010; Yu and Clausi, 2008) or the spectral
difference (Moser et al., 2013). These models aim to suppress the
smoothness effect when the value of the term becomes larger
(often with high probability exactly corresponding to, or near real
boundaries). In this way, the models can effectively preserve edges.

Unfortunately, as shown in Figs. 8(a) and 12 (g), these state-of-
the-art MRF models involving local discontinuities, still suffer from
unexpected and isolated class labels around object boundaries,
where a salt-and-pepper noise effect can be appreciated. These
pixels located around boundaries have distinct spectral presenta-
tions with surrounding pixels. According to the MRF models, with
a high possibility, they are labelled as the class with the most sim-
ilar spectral property, rather than the spatial neighboring classes.
Whereas, in order to properly consider spatial dependency among
different land classes and obtain better visual inspection, we have
strong motivations to divide these pixels with different spectral
properties into the surrounding classes. For instance, in Fig. 8, pix-
els located between different crop types are expected to be recog-
nized as one of the adjacent types, rather than some other types
with similar spectral properties but long spatial distance.

From previous literature review, we can find that most of post-
processing optimization methods perform quiet well in homoge-
nous regions. A key aspect when utilizing optimizations is to
design a proper spatial model, which can deal with the features
and labels around object boundaries. An expected spatial regular-
ization method should refine an already classified map, smooth
labels in homogenous regions, meanwhile, align the boundaries
among different labels with real object boundaries.

In this context, this paper encodes spatial a priori assumptions
involving both spectral dissimilarity and class co-occurrence
dependency into two spatial energy functions, and results in a
new MRF method with two-step spatial regularization. The first
spatial energy function integrating local spectral dissimilarity is
to smooth the initial classification map while preserving object
boundaries. The second spatial energy function integrating the
class spatial dependency is constructed to further regularize pixels
around object boundaries. It is also our main contribution in this
research.

The rest of the paper is organized as follows. Section 2 presents
background on MRF-based methods intended to achieve spatial
smoothness. The proposed MRF method with two-step spatial reg-
ularization is presented in Section 3. Experimental results and dis-
cussions, analyzing the influence of different spectral dissimilarity
metrics and a detailed parameter sensitivity assessment, are pre-
sented in Section 4. Comparisons with some other state-of-the-
art methods are conducted in Section 5. Conclusions and hints at
plausible future research lines are given in Section 6.

2. Background on MRF-based methods to achieve spatial
smoothness

2.1. Notations and problem formulation

Let S denote the set of sites over which a remote sensing image I
is defined, and letX = {1, 2, . . . , k} denote a set of labels, being k the
number of labels. Both the observation random field Y and the
label random field X are defined on S. The observed image
y ¼ fyi i 2 Sj g is a realization of the observation random field Y. A
label image x ¼ fxiji 2 S; xi 2 Xg is a realization of X, in which each
xi takes a value from X denoting the class to which the site i
belongs.

The spatial regularization task performed by a pixelwise classi-

fication map is formulated as finding an optimal estimation x
_
that

maximizes the posterior PðX yj Þ given the observed image y.
According to the Bayesian rule and the log-linear property, finding

the maximum a posteriori (MAP) solution x
_

of PðX yj Þ (also called
optimal configuration) is equivalent to minimizing the following
two-part energy function (Li, 2009):

x
_ ¼ argmax

x
ðpðy xj ÞPðxÞÞ ¼ argmin

x
ðEf þ ElÞ ð1Þ

with

Ef ¼ � logðpðy xj ÞÞ; ð2Þ
and

El ¼ � logðPðxÞÞ: ð3Þ
With the aforementioned formulation in mind, two issues need

to be addressed: (1) how to analytically represent the feature
model Ef and the label model El, and (2) how to find a solution
for the objective function (1).
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It is worth noting that ‘‘feature model” is referred to as ‘‘spectral
model” or ‘‘spectral energy function” in many works (refer to
Tarabalka et al. (2010) and Aghighi et al. (2014)), since the features
considered in most feature models are only related to the spectral
properties of remote sensing images. Meanwhile, ‘‘label model” is
also referred to as ‘‘spatial context model” or ‘‘spatial model”, as this
model deals with the spatial relationships happening in the label
image. In this paper, we use these terms simultaneously to express
the same meaning.

2.2. Analytical representation of feature and label models

In the feature model Ef, each feature vector yi 2 y is often
assumed to be independent given the label xi, thus pðy xj Þ turns to:
pðy xj Þ ¼

Y
i2S

pðyijxiÞ ð4Þ

where p(yi|xi) can be assigned directly to the estimated class prob-
abilities for each pixel site by the probabilistic support vector
machine (SVM) (Moser et al., 2013; Tarabalka et al., 2010; Wu
et al., 2004):

pðyijxiÞ ¼ li;xi with xi 2 X; ð5Þ
where li;xi denotes the probability of the pixel i belonging to a given
class xi. By substituting (4) and (5) into (2), Ef turns to:

Ef ¼ �
X
i2S

logðli;xi Þ: ð6Þ

In the label model El, the joint probability P(x) is assumed to
exhibit the Markovianity property in the MRF model (Li, 2009), i.e.,

PðxÞ ¼
Y
i2S

Pðxijxj; j 2 NiÞ; ð7Þ

where Ni denotes the set of neighboring sites, typically defined as a
second order neighboring system (8-neighborhood connectivity).
Moreover, Pðxijxj; j 2 NiÞ can be modeled by a pair-wise multilevel
logistic model (MLL) (Derin and Elliott, 1987), which is analytically
depicted as:

Pðxijxj; j 2 NiÞ ¼ 1
Zl

exp �
X
j2Ni

Vðxi; xjÞ
 !

; ð8Þ

with the clique potential function V(xi, xj):

Vðxi; xjÞ ¼
b if xi – xj
0 otherwise

�
; ð9Þ

where Zl is a normalization factor and b, called the potential or
smoothing parameter, is a positive number reflecting the pair-site
interaction between two neighboring sites. Thus, by substituting
(7)–(9) into (3), El turns to

El ¼ b
X
i2S

X
j2Ni

½1� dðxi; xjÞ�; ð10Þ

where d(xi, xj) is the Kronecker delta function. Any violation of the
smoothness condition, i.e., "xi – xj with j 2 Ni, incurs a positive pen-
alty b. As the expected configurations are those with lower El values,
the MLL model (10) favors a smooth x. By introducing (10) and (6)
into (1), the analytical objective function of MRF is thus written as:

x
_ ¼ argmin

fxi ;i2Sg

X
i2S

� logðli;xi Þ þ b
X
j2Ni

½1� dðxi; xjÞ�
( )

ð11Þ

According to the objective function (11), the local neighborhood
composed of different classes incurs a penalty given by the positive
number b. Because the more probable solutions are those with
lower values, the optimal configuration favors smoothness over
the whole image lattice. Therefore, this classic MRF model is quite
effective in creating homogenous regions, but also leads to over-
smoothed object boundaries (Schindler, 2012; Yu and Clausi,
2008). For this reason, a spatial prior model, which can better align
with real object boundaries and fit object details, still needs to be
defined. This is the first problem that we address in Section 3.

2.3. Smoothing parameter selection and optimization methods

The solutions of the objective functions (11) and (14) can be
obtained by various combinatorial optimization techniques, such
as iterated conditional mode (ICM) (Besag, 1986), belief propaga-
tion (Li, 2009), and graph cuts (Boykov and Kolmogorov, 2004;
Boykov et al., 2001). ICM is a steepest local energy descent method,
which usually exhibits short runtimes. However, due to the greedy
nature of the method, its performance largely depends on the ini-
tial estimate (Besag, 1986). In contrast, due to the global optimiza-
tion property and an acceptable polynomial time complexity with
respect to the number of sites, the a-expansion graph cut (EGC)
algorithm (Boykov and Kolmogorov, 2004) has drawn increasing
attention in the remote sensing community.

Before inferring the labels by conducting an EGC or ICM opti-
mization method for the objective functions, another parameter
that needs to be estimated is the smoothing parameter b. This
parameter controls to what extent the spatial context model is
involved in the optimization process. Tarabalka et al. (2010)
reported that b 2 [2, 4] is preferable for a MRF model with gradient
information. In our spatial regularization task, based on the pixel-
wise probability estimates for the individual classes, an automatic
search process is designed to determine the parameter b. This is
the second problem we would like to address in the next section.

3. Proposed method

This section is organized as follows. Firstly, we describe a group
of spatial models considering a set of different spectral dissimilar-
ity metrics. Secondly, we establish an anisotropic spatial model by
taking into account the class co-occurrence dependency. Finally,
we address the related smoothing parameter selection problem
and summarize the whole process.

3.1. Spatial model integrating spectral dissimilarity

As discussed in Section 2, the classic MRF model tends to over-
smooth near-boundary pixels. For the purpose of edge preserva-
tion, a natural extension is to integrate local statistics, such as
pair-wise edge strength or spectral dissimilarity information, into
the spatial model Es. By introducing a spatial adaptive interactive
parameter f(Di,j) into the potential function (9), V(xi, xj) is updated
as follows:

Vðxi; xjÞ ¼
bf ðDi;jÞ if xi – xj
0 otherwise

�
: ð12Þ

where f(Di,j) is a monotonically decreasing function with respect to
Di,j (the dissimilarity between the neighboring pixel sites i and j).
And analogous to (10), El turns to:

El ¼ b
X
i2S

X
j2Ni

f ðDi;jÞ½1� dðxi; xjÞ�: ð13Þ

Correspondingly, a new objective function can be obtained:

x
_ ¼ argmin

fxi ;i2Sg

X
i2S

f� logðli;xi Þ þ b
X
j2Ni

f ðDi;jÞ½1� dðxi; xjÞ�g; ð14Þ

Generally, f(Di,j) is defined as an exponential function (Yu and
Clausi, 2008). Here, we define f(Di,j) as:
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f ðDi;jÞ ¼ expð�jDi;jjÞ: ð15Þ
Furthermore, in order to reach an analytical formation of the

new objective function (14), the dissimilarity measurement Di,j

should be also defined. Instead of using gradient-based metrics,
we chose spectral-based metrics to define Di,j since the gradient
of gray values may not correctly model real boundaries, especially
in highly-textured regions (Martin et al., 2004; Wang et al., 2014).
Considering the highly varying spectral characteristics of remote
sensing images, we examine four spectral metrics for this purpose,
including the spectral angle mapper (SAM), spectral information
divergence (SID) (Chang, 2000), the combination of SAM and SID
(SAM-SID) (Du et al., 2004), and a normalized Euclidean distance
(NED) (Robila and Gershman, 2005) which are respectively defined
as follows:

DSAM
i;j ¼ cos�1 hyi; yji

kyik2kyjk2

 !
ð16Þ

DSID
i;j ¼

XB
b¼1

y
_

i;b log
y
_

i;b

y
_

j;b

þ
XB
b¼1

y
_

j;b log
y
_

j;b

y
_

i;b

ð17Þ

DSAM�SID
i;j ¼ DSID

i;j � sinðDSAM
i;j Þ ð18Þ

DNED
i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB

b¼1

yi;b
�yb

� yj;b
�yb

� �2
s

ð19Þ

where yi is a B-dimensional spectral vector with B elements, yi,b
(b = 1, . . . ,B), �yb is the mean value of yb, and y

_

i;b is the normalized
value by yi,b over the summation of all elements of yi.

By substituting (16)–(19) into (15) respectively, and further into
(14), a group of new objective functions are obtained. The solution
of each objective function will serve as the initial state of the sec-
ond MRF model.

3.2. Spatial model integrating class co-occurrence dependency

Integrating local dissimilarity information into a spatial model
is effective for preserving edges, but it also creates unexpected
object particles around boundaries. In order to solve this problem,
we propose a second spatial model that integrates the class
co-occurrence dependency. In this way, a greater penalty is applied
to class pairs with weak spatial relation and a smaller penalty to
class pairs with strong spatial relation.

In detail, xi represents the label of a generic site i; i + 1 is the site
next to i along direction d; the pair-site interaction between the
site i and the site i + 1 along direction d can be expressed with a
class/label co-occurrence probability gd(xi, xi+1). As the set of pair-
site cliques was defined over a second-order neighborhood system
(8 – neighborhood system), the direction d should be any of 8
directions, that is, d 2 {1, 2, . . . ,8} is set. Subsequently, the classic
potential function (9) can be rewritten as a direction-dependent
potential function:

Vðxi; xjÞ ¼
b½1� gdðxi; xiþ1Þ� if xi – xiþ1 and d 2 f1;2; . . . ;8g
0 otherwise

�
:

ð20Þ
Correspondingly, a new objective function can be updated from

(11) as follows:

x
_¼argmin

fxi ;i2Sg

X
i2S

� logðli;xi Þþb
X

d2f1;2...;8g
½1�gdðxi;xiþ1Þ�½1�dðxi;xiþ1Þ�

( )
;

ð21Þ
According to (20), for a given pair of sites along direction d, if

the two labels show strong spatial dependency, i.e., gd(xi, xi+1) is
large, a small penalty is applied to the spatial model through
[1 � gd(xi, xi+1)]. As the more likely configurations for (21) are those
with lower function values, a new class assignment accompanying
a stronger spatial relation will be accepted with a higher probabil-
ity. In this way, only those label pairs with high co-occurrence
dependency are preserved, and the output of the first model is fur-
ther regularized.

After establishing the model (21), an immediate question is
how to estimate the probability gd(m, n) with "m, n 2X (for sim-
plicity, xi, xi+1 are re-denoted as m, n respectively.). The probability
gd(m, n) is naturally linked to the frequency ratio of a given classi-
fication map and estimated as

gdðm;nÞ ¼ jSðm!nÞd j
jSmj d ¼ 1;2; . . . ;8; ð22Þ

where Sm is the set of pixels that are assigned with the labelm and |
Sm| is the number of the pixels; (m? n)d denotes a co-occurring
pair with the label m and n along the direction d, and Sðm!nÞd is
the set of these pairs. In practice, jSðm!nÞd j can be computed by fol-
lowing the similar routine adopted by the well-known gray level
co-occurrence matrix (GLCM) (Haralick et al., 1973). Consequently,
for any direction d = {1, 2, . . . ,8}, the class co-occurrence probability
is associated with a k � k matrix Gd = {gd(m, n), "m, n 2X},where k
is the number of class.

Fig. 1 clarifies the previous idea on a simple (urban) image.
Fig. 1(b) lists 6 classes contained in (a). According to the 8 direction
configurations in (c), one of the 8 probability matrixes with Gd=3 is
shown in (d). This matrix is composed by two kinds of elements:
the main diagonal elements and non-diagonal elements. The main
diagonal elements are related to the intra-class dependency. The
non-diagonal elements, representing the inter-class possibility,
denote the strength of spatial interactions. Taking g3(4, 6) in (d)
as an example, this entry has a significantly higher value
(0.0612) than other off-diagonal elements in the same row, which
means that the roof-shadow class pair (along the direction d = 3)
has a tighter interaction as compared to the interactions between
roof and other classes.

It is apparent, if the accuracy of co-occurrence probabilities is
not satisfactory, the defined spatial context model (20) may lead
to a poor spatial optimization performance. Therefore, in order to
let the model to play a positive role, we initialize the
co-occurrence probabilities according to the output map of the first
model and update the estimation iteratively during the second
optimization process. This is also the main reason why we design
a two-step MRF method, rather than integrate the spectral and
spatial factors in a single spatial model.

We should also mention that the employment of the class
co-occurrence matrix is not a fresh idea. For instance, Huang et al.
(2014) utilize the primitive co-occurrence matrix to re-learn the
feature space of initial classification; the class co-occurrence
matrix has also been employed to describe multiple Markov chains
(Scarpa et al., 2009); Aghighi et al. (2014) define block and global
co-occurrence matrixes for estimating the smoothing parameter
of an edge-preserving MRF model. Our contribution is that the
matrix is integrated into the spatial part of the second energy func-
tion, and aimed to optimizing noisy boundaries of initial classifica-
tion map.

3.3. Selection of smoothing parameter

Before finding solutions of the two objective functions (14) and
(21), the values of the parameter b in the two functions are
required to be known. We only estimate the optimal value for
the first MRF model (14) and directly set the parameter b in the
second function (21) as equivalent to the value in the first one



Fig. 1. An example of the calculation of the co-occurrence probability matrix. (a) Urban area image; (b) classification map and corresponding legends; (c) predefined
neighboring system; (d) one of the co-occurrence probability matrixes: G3, and each element g(m, n) represents the frequency ratio related to the class m and n with the
spatial configuration d = 3.
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(14). This is because the spectral energy models applied to the two
objective functions are the same, and the second function is initial-
ized by the output of the first one.

Adopting the average accuracy (AA) as the evaluationmetric, the
optimal value of b is derived by a set of trials based on reliable sam-
ples. We define an initial classification result on pixel i is reliable, if
the confidence of this pixel, which is the ratio of the first-largest
possibility to the second-largest class possibility, is great than to
2. All samples fulfilling this condition consist of a reliable reference
data set. The detailed selection process is described as follows:

Step (1): Define an initial search sequence for each image:
R ¼ ½2�2; 2�1; 2�0; . . . ;26�; Specify b in (14) with each value in
R in sequence; obtain a series of optimized classification maps
by resorting to a combinatorial optimization method, e.g., the
a-expansion graph cut (EGC) algorithm (Boykov and
Kolmogorov, 2004).
Step (2): Calculate the AA value for each map based on the reli-
able data set, and set b associated to the highest value (denoted
as b�);
Step (3): Denote the second element before b� in R as b��2;
update R with the vector of ten linearly equally spaced points
between b��2 and b�; repeat steps (1)–(2) once, and then output
b� and the optimized thematic map associated with this optimal
value.

3.4. Overall algorithm

With the observed image I, the initial classification map x, and
the estimated class probabilities li;xi (xi 2X and i 2 S), the whole
process is described as follows:

(1) Initialize the objective function (14). Specify the initial clas-
sification map x as the a priori information x(0); specify the
output of the probabilistic SVM classifier li;xi (xi 2X and
i 2 S) as the initial class probability lð0Þi;xi
; calculate various

spectral dissimilarities Di,j according to (16)–(19), respec-
tively, in order to obtain f(Di,j) in (15) for each pixel in the
remote sensing image.

(2) Solve the objective functions (14) with different b values by
the a-expansion graph cut (EGC) algorithm (Boykov and
Kolmogorov, 2004) respectively, determine b� as the one
corresponding to the highest AA value and output the asso-
ciated classification map xðtmax1Þ. Section 3.3 described this
process in detail.

(3) Initialize the objective function (21) based on the outputs of
the objective function (14). Specify the classification map
xðtmax1Þ obtained from the previous MRF model as the a priori
information x(0); specify the output of the probabilistic SVM

classifier as the initial class probabilities lð0Þi;xi
; calculate the

initial multi-directional co-occurrence probabilities

gð0Þ
d ðm;nÞ ("m, n 2X and d = 1, . . . ,8) based on xðtmax1Þ accord-

ing to (22), and set b ¼ b�.
(4) Set t = 0.
(5) Update x(t) into x(t+1) in an ICM manner (Besag, 1986).

Sequentially update each xðtÞi into xðtþ1Þ
i , and obtain a new

xðtþ1Þ ¼ fxðtþ1Þ
i

���i 2 S; xðtþ1Þ
i 2 Xg, where xðtþ1Þ

i 2 xðtþ1Þ is the

one that produces the minimum energy for (21), that is,
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(6) Renew the co-occurrence probabilities gðtþ1Þ
d ðm;nÞ with "m,

n 2X and d = {1, 2, . . . ,8} based on x(t+1).
(7) If x(t+1) = x(t) or a maximum number of iterations (in our case,

20) is reached, output x(t), else set t = t + 1 and go to step 5.
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For illustrative purposes, a generic flowchart of the proposed
method is also presented in Fig. 2, where the indexes of key
equations are included. Starting with an initial classification
map, the first optimization step is intended to preserve edges
while smoothing the raw classification map. The second step is
intended to further optimize the output of the first step, by
focusing on the pixels located at object boundaries. In the first
stage, a heuristic search method according to the confidence of
the classification results is integrated for determining proper
smoothing parameters.

Note that we choose EGC to solve the first objective function
(14), whereas we solve the second objective function (21) by ICM
based on computational concerns. With similar optimization
results, ICM is much faster than EGC when applied to the second
function. Another issue is the convergence of the ICM based itera-
tions. During the ICM iterative process, the probability pðy xj Þ is
non-decreasing within boundary [0,1]. As a monotonous bounded
sequence necessarily converges, the convergence of the iteration
process can be guaranteed in this case.
4. Data sets and experimental setting

The experimental data sets, setting and metrics used for the
evaluation are introduced in this section.
4.1. Data sets

We used hyperspectral and multispectral images to evaluate
the effectiveness of the proposed MRF method. A summary of the
considered data sets is reported in Table 1.
Fig. 2. Flowchart of the proposed M
The two popular hyperspectral images, University and Salinas,
are illustrated in Fig. 3. The University image was obtained from
the Reflective Optics System Imaging Spectrometer (ROSIS),
acquired over the University of Pavia, Italy. This image includes 9
classes and contains a total of 42,776 reference pixels. The Salinas
image was obtained over an agricultural area by the Airborne Vis-
ible Infra-Red Imaging Spectrometer (AVIRIS). After discarding 20
water absorption bands, totally 204 bands are available for inter-
pretation. The image contains 16 classes and 54,129 pixels are
available for validation. Both images are widely used data sets
for testing hyperspectral classification algorithms.

Two multispectral images are also used in our experiments and
displayed in Fig. 4. The Hainan image was acquired by the
WorldView-2 satellite, covering a rural area in the Hainan Province
in China. TheWuhan image was acquired over the city of Wuhan in
China by the ZY-3 satellite, which contains very dense buildings.
Both images have 7 classes of interest including roads, grass, build-
ings, soil, shadow, trees and water body.

In order to produce the initial classification maps, hand-crafted
or automatically learned features (e.g., from a CNNmodel) could be
used. However, as previewed in the introduction part, the pixel-
wise classifications, which involves of spatial features, may provide
less-noisy and high-accuracy initial maps. In order to highlight the
efficiency of the proposed method, we just adopted basic spectral
features. i.e., all spectral bands of the hyperspectral/multispectral
images and probabilistic SVM classifier for the pixelwise classifica-
tion. Following the works (Wu et al., 2004, Chang and Lin, 2011),
the optimal parameters for these classifiers (implemented using
a radial basis function (RBF) kernel) were obtained by five-fold
cross validation. Randomly selected samples from the reference
maps (50 pixels per-class for the hyperspectral images and 100
RF-based optimization method.



Table 1
Experimental data sets used in this study.

Name Sensor Name Size Bands Resolution (m) Area

Hyperspectral University ROSIS 610 � 340 103 1.3 Rural
Salinas AVIRIS 512 � 217 224 3.7 Agriculture

Multispectral Hainan WorldView-2 600 � 520 8 2.0 Rural
Wuhan ZY-3 651 � 499 4 5.8 Dense Urban

Fig. 3. Two hyperspectral data sets considered in experiments: University (a) and Salinas (b). The false color images shown in (a) and (b) are generated using the first three
principal components as red, green and blue components; the second columns of each sub-figures show the ground truth pixels for each image. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Twomultispectral data sets considered in experiments: WorldView-2 Hainan (a) and ZY-3Wuhan (b). Each sub-figure illustrates a false color image with near-infrared,
red and green bands, a ground truth map and class legends with the number of validation samples. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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pixels per-class for the multispectral images) were utilized for
training.

4.2. Considered evaluation metrics

Commonly used accuracy metrics include Kappa, overall accu-
racy (OA) and average accuracy (AA). As these metrics conduct
pixel-based evaluation on limited reference samples, the evalua-
tion is biased and not sufficiently on estimating the performance
of algorithms around boundary areas (Rutzinger et al., 2009).
Therefore, we considered three extra metrics including the Moran’s
I spatial autocorrelation index (MI) (Espindola et al., 2006), the
empirical evaluation of segmentation (EES) (Borsotti et al., 1998)
and the match cost between two boundary maps (MC) (Martin
et al., 2001) for comprehensive assessment. MI and EES are
sample-independent metrics and estimate object regions from dif-
ferent views; MC computes the correspondence of two boundary
maps.
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In detail, MI is defined as follows:

MI ¼ RPR
i¼1

PR
j¼1wi;j

PR
i¼1

PR
j¼1wi;jðyi � �yÞðyj � �yÞPR

j¼1ðyi � �yÞ2
ð24Þ

where R is the total number of regions; yi and �y are the mean value
of the region i and the whole image respectively, wi,j is a measure of
spatial adjacency of regions, where wi,j is given a value of 1 if two
regions are neighbors, and 0 otherwise. Thus, on average, MI
denotes the difference between each region and its neighbors.

EES is defined as follows:

EES ¼ 1
10;000ðN �MÞ

ffiffiffi
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�
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where N �M is the size of image, R is the number of regions, R(Ai) is
the number of regions having an area equal to Ai and ei represent
the average color error of the ith region, which is defined as the
sum of the Euclidean distances between each spectral vectors of
the pixels of region i and the average vector of region i. The sum
in EES consists of two terms, the first term is high for non-
homogeneous regions (high ei) and the second may be high for
small regions (as the number of regions of area Ai may be large).
Therefore, a small EES value is preferred, as it indicate a segmenta-
tion contain large and homogeneous regions. MI and EES together
provides a comprehensive on closed regions derived from classifica-
tion maps. MI assess the inter-region heterogeneity. In contrast, EES
assess the intra-region homogeneity.

MC compute the minimum-cost correspondence between
boundary maps. The cost of corresponding two pixels is equal to
their Euclidean distance, and two pixels beyond the predefined dis-
tance threshold cannot be corresponded. Therefore, a small MC
value is preferred, as it indicate a better correspondence with ref-
erence maps. In our cases, the distance threshold is set as a fraction
(=0.01) of image diagonal and the reference boundary maps are
manually sketched by experts. Here, we define a pixel as a bound-
ary pixel if a class change between the current pixel and its neigh-
boring pixels is detected.
5. Experimental results and discussion

5.1. General results obtained by the proposed MRF models

In order to achieve a comprehensive evaluation of the tested
methods, a series of different MRF models were carried out based
on the four considered data sets. The initial results from the prob-
abilistic SVM are named as Raw; Classic-MRF denotes the results of
the classic MRF (11), which is also implemented with the proposed
parameter selection method and solved by the graph cut; SAM-
MRF, SID-MRF, SAMSID-MRF and NED-MRF denote the proposed
spectral-class spatial model (21), but with 4 different spectral dif-
ference metrics [shown in (16)–(19)].

Based on the randomly selected training sets, each method was
repeated 30 times in order to ensure statistical significance. Both
the mean and standard deviation values of OA from the four test
images are reported in Table 2.

The McNemar’s test (Foody, 2004) was also applied to each pair
of results obtained from two different methods, where the Z-Score
is applied to validate whether the differences between two meth-
ods are statistically significant. At a general 5% significance level,
the significant difference between methods is accepted if |Z|
> 1.96. More specifically, Z > 1.96 or Z < �1.96 indicates that the
second method is more or less accurate, respectively, and |Z|
< 1.96 indicates the two methods have no significant difference.
For instance, as shown in Table 3, ‘‘SAM-MRF vs. NED-MRF” results
in ‘‘3+, 1N”, indicating that the NED-MRF method obtained three
instances of positive significance and one instance of no signifi-
cance in the four considered data sets when compared with
SAM-MRF.

As shown by Table 2, compared with the raw classification
results, all methods achieve significant improvements. For exam-
ple, the increments in terms of OA are around 12% (University),
10% (Salinas), 4% (Hainan) and 4% (Wuhan), respectively. This
observation is also supported by the results of the McNemar’s test
shown in Table 3, since all MRF methods obtains ‘‘4+” with respect
to the raw results. Meanwhile, the proposed four methods are also
significantly better than the classic MRF method, as all the meth-
ods have achieved ‘‘4+” over the Classic-MRF.

Among all the four proposed models, the NED-MRF model
achieved the highest OA in most cases. When considering all
related statistics shown in Table 3, the difference between each
pair of methods selected from the four proposed ones are statisti-
cally significant, as the statistics are dominated by ‘‘+” or ‘‘�”.
Therefore, a descending order on the performance of the four mod-
els can be determined in terms of the statistics: NED-MRF > SAM-
MRF > SID-MRF > SAMSID-MRF.

Some of the classification maps obtained for the Salinas data
set are presented in Fig. 5. This data set is special, as a lot of
‘‘1+” and ‘‘1N” values were obtained for this data set as listed
in Table 3. It is clear in Fig. 5 that the ‘‘salt-and-pepper” problem
in the raw classification maps can be substantially reduced by all
MRF-based methods. Furthermore, as illustrated in the local
patches designated as 1–4 in Fig. 5, the differences among the
compared methods is obvious and mainly occurs around objects
edges. In this regard, the classic MRF method [see Fig. 5(d)],
which is based on the smoothness assumption, tends to heavily
oversmooth small structures. In contrast, the proposed methods
[see Fig. 5(e)–(h)] show the advantages of constraining over-
smoothness and preserving edges. Moreover, the NED-MRF
method shows superior visualization performance than other
tested methods. According to both quantitative and qualitative
assessments, the proposed MRF methods (particularly the NED-
MRF) can achieve a good tradeoff between oversmoothness and
spatial regularization.

We have also tested the computational time using a Windows 7
laptop with an Intel I7 2.7-GHz CPU using 16-GB memory. The
averaged processing times of the four proposed methods in this
computing architecture are reported in Table 4. As can be seen,
the NED-MRF method always results in the shortest processing
time, i.e., 67.54, 60.21, 89.97, and 265.81 s for University, Salinas,
Hainan, and Wuhan images, respectively. When considering the
two optimization steps, the first one required much more
computational time than the second one. This step is quite
time-consuming, as it involves an exhaustive search process for
selecting an optimal smoothing parameter.

5.2. Analysis of the integration of class co-occurrence dependency

In this subsection, by comparing the output of the first and sec-
ond stages of the proposed framework, we validate the necessity of
integrating class co-occurrence dependency. For a given data set,
each considered method was repeated 30 times with different ini-
tial training samples.

We calculated and compared the four metrics values (i.e., OA,
EES, MI and MC), resulting in four sub-figures for each data set.
As similar conclusions can be drawn for all data sets, Fig. 6 just pre-
sents the two results obtained from University and Hainan. The first
sub-figure shown in Fig. 6(a) consists of 4 pairs of OA curves
obtained from University; each pair is composed of two results,
obtained after integrating the class co-occurrence dependency
and without such integration. For instance, NED vs. NED-MRF,



Table 2
Overall accuracy of the MRF-based algorithms proposed in this study for the different considered remote sensing data sets. Starting from randomly selected training sets, each
algorithm is repeated 30 times. Both the mean and standard deviation of the OA and AA values are reported in the form of ‘‘mean ± standard deviation”.

University Salinas Hainan Wuhan

Raw 84.5 ± 2.01 88.7 ± 1.08 93.2 ± 0.67 88.5 ± 0.71
Classic-MRF 89.0 ± 2.06 91.9 ± 1.12 94.4 ± 0.67 90.1 ± 0.66
SAM-MRF 96.7 ± 1.79 98.1 ± 1.56 97.7 ± 0.74 93.1 ± 0.54
SID-MRF 96.2 ± 1.85 97.9 ± .149 97.6 ± 0.78 93.1 ± 0.49
SAMSID-MRF 96.1 ± 1.97 97.8 ± 1.47 97.5 ± 0.83 93.1 ± 0.52
NED-MRF 98.2 ± 1.41 99.2 ± 0.67 97.9 ± 0.74 93.1 ± 0.47

Table 3
Summary of McNemar’s test conducted for the classification maps provided by 6 different methods using 4 data sets, respectively, where + , n and � denote positive, no and
negative statistical significance, respectively.

Classic-MRF SAM-MRF SID-MRF SAMSID-MRF NED-MRF

Raw 4+ 4+ 4+ 4+ 4+
Classic-MRF – 4+ 4+ 4+ 4+
SAM-MRF – – 4� 4� 3+, 1N
SID-MRF – – – 3�, 1+ 4+
SAMSID-MRF – – – – 4+

Fig. 5. Classification results for the Salinas data set obtained by different MRF-based methods. (a) Three-band false color composite image, (b) validation data, (c) raw
classification result obtained by the probabilistic SVM, (d) classic MRF method, (e) SAM-MRF method, (f) SID-MRF method, (g) SAMSID-MRF method, and (h) NED-MRF
method. The noise (pepper-and-salt effect) can be appreciated in the raw image (c), while a visible gap among maps with similar OA values and superior performance of the
proposed methods (e–h) in object boundaries can be appreciated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 4
Processing time (seconds) for the different MRF-based methods when applied to different data sets.

Method University Salinas Hainan Wuhan

NED-MRF Step 1 43.85 38.18 61.92 186.12
Step 2 20.59 15.32 24.94 69.18
Total 67.54 60.21 89.97 265.81

SAM-MRF Step 1 116.69 80.17 79.55 205.76
Step 2 16.54 15.09 24.95 77.73
Total 144.43 102.83 107.60 293.88

SID-MRF Step 1 86.24 85.87 85.22 227.13
Step 2 22.17 15.11 26.20 73.73
Total 111.52 112.03 114.51 311.40

SAMSID-MRF Step 1 120.28 84.29 97.30 220.31
Step 2 28.33 26.07 28.10 77.80
Total 153.83 113.07 128.49 307.82
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NED denotes the MRF method only with spectral dissimilarity in
terms of the normalized Euclidean distance (NED), while NED-
MRF denotes the same method implemented with both NED and
class co-occurrence dependency.

As it can be seen in Fig. 6, in most cases the NED-MRF and NED
exhibit the best performances with respect to the four considered
metrics. Meanwhile, it is also apparent that the integration of the
class-occurrence possibilities leads to constant increments over
different data sets and experimental settings.

Due to the lack of validation samples, especially samples around
object boundaries, the increments in terms of OA seem not signif-
icant and are as low as 1%. When considering the MI, and EES met-



Fig. 6. Comparison of different pairs of MRF-based methods according to OA, EES, MI and MC: (a) University, and (b) Hainan. The solid line and the dotted line with the same
color respectively denote a method considering only spectral dissimilarity and the corresponding method integrating both spectral dissimilarity and class-occurrence
dependency. Expect OA, small values of three other metrics are preferred. Noteworthy details include that the class co-occurrence dependency leads to an improvement of the
four metrics in most cases, and the stable performance of the proposed methods across different data sets and experimental settings. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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rics, as illustrated in the second to and third columns of Fig. 6, the
integration of class co-occurrence dependency leads to an obvious
decrease of values in most cases. Small values of MI indicate large
inter-region heterogeneity, thereby exhibiting clear boundaries
between regions; small values of EES indicate that the classifica-
tion map is composed of large and homogenous regions. Therefore,
both MI and EES values indicate that the integration can improve
classification results.
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Furthermore, MC clearly indicates the improvement around
boundaries, as the integration of class co-occurrence dependency
greatly reduce the match cost (better correspondence between
detected and ideal boundaries) for all cases. Meanwhile, as shown
in Figs. 7 and 8, the actual visual improvements between each pair
of maps is also quite clear. Through the integration of spatial
dependency, more accurate location of boundaries and more com-
pact objects can be obtained, the noisy pixels among different land
objects are largely suppressed.

Both visual and quantitative assessments from regions and
boundaries suggest that a spatial model only considering local
spectral information is often sensitive to gray value discontinuities
and confirm the need to integrate class co-occurrence dependency
in the MRF module.

5.3. Evaluation of the selection strategy of the b parameter

This section focuses on analyzing the proposed strategy for
selecting the value of b parameter. When an MRF method is
Fig. 7. Comparison of the results obtained with and without integrating class co-occurren
dissimilarity of SAM), which results in OA = 96.7%, MI = 0.0410, EES = 148.0, and MI
dependency), which results in OA = 98.5%, MI = �0.0418, EES = 34.0, and MI = 1.29E07. (c
overlay of original bands and the object boundaries responding to (b). Noteworthy deta
constantly better than SAM with respect to the four considered metrics.
applied to a given data set, the optimal b value is selected from a
search set. We exhaustively tested every candidate value in the
set. Fig. 9 shows the reliable reference samples obtained according
to the ratio of SVM possibilities; Table 5 reports the b values corre-
sponding to the highest AA and Kappa, and the selected b.

As it can be seen in Fig. 9, the reference samples consist of a rep-
resentative subset of the original image. When considering the
selected b values with regards to their counterpart values related
to the optimal average accuracy (Aopt) and Kappa (Kopt), the three
values are identical or very close in most cases. Large differences
[2, 0.5, 0.44] and [4, 1, 0.92] were observed from University with
the SAM-MRF method, and for Hainan with the NED-MRF method.
We report their producer’s accuracies in Table 6 for further
investigation.

It is clear from Table 6 that a large b value is often preferred in
order to model some artificial land-cover classes, such as road,
building, asphalt and painted sheet. On the contrary, for the recog-
nition of natural land classes such as trees, grass, shadow and
gravel, a relatively small value is preferred. Artificial land classes
ce dependency using the Hainan image. (a) SAM (MRFmethod only with the spectral
= 3.31E07; (b) SAM-MRF (MRF method with both SAM and class co-occurrence
) The overlay of original bands and the object boundaries responding to (a). (d) The
ils include the visual gap between (a) and (b), and the fact that SAM-MRF performs



Fig. 8. Comparison of the results obtained with and without integrating class co-occurrence dependency using the Salinas image. (a) NED (MRF method only with the spectral
dissimilarity of NED); (b) NED-MRF (MRF method with both SAM and class co-occurrence dependency); (c) the overlay of original bands and the object boundaries
responding to (a); (d) the overlay of original bands and the object boundaries responding to (b). NED-MRF performances better around boundaries.

Fig. 9. Reliable samples obtained according to the ratio of class possibilities and used for selecting proper smoothing parameters: (a) University, (b) Salinas, (c) Hainan, and (d)
Wuhan. Black color in each figures denotes the background.

Table 5
Smoothing parameter b values corresponding to the highest kappa (denoted as Kopt), the highest average accuracy (denoted Aopt) and the selected smoothing parameters
according to the proposed methods.

SAM-MRF SID-MRF SIDSIN-MRF NED-MRF

Kopt Aopt Selected Kopt Aopt Selected Kopt Aopt Selected Kopt Aopt Selected

University 2 0.5 0.44 2 0.92 0.92 1 0.5 0.5 3.67 3.67 3.67
Salina 3.67 3.67 3.67 4 3.67 3.67 4 3.67 3.67 14.67 14.67 14.67
Hainan 1.83 1.67 1.33 1.83 1.5 1.5 2 1.83 1.83 4 1 0.92
Wuhan 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.25 0.25
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Table 6
Evaluation of the influence of b values on the classification quality: (a) Hainan image, NED-MRF method, and (b) University image, SAM-MRF method. Three b values are associated
with the optimal Kappa, the optimal average accuracy, and the proposed selected method respectively. The highest values of every class and every metric are in bold.

Hainan NED-MRF

Class Name # sample b = 4 b = 1 b = 0.92

(a) Results for the Hainan image
Road 5357 89.70% 85.41% 85.14%
Grass 7417 98.39% 99.05% 99.05%
Building 11,578 100.00% 99.94% 99.92%
Soil 22,189 99.87% 99.77% 99.85%
Shadow 1427 89.21% 92.99% 92.43%
Tree 14,086 99.01% 99.72% 99.64%
Water body 11,209 100.00% 100.00% 100.00%

Kappa – 0.9734 0.9680 0.9671
OA – 97.84% 97.39% 97.32%
AA – 96.60% 96.70% 96.57%
MI – 0.0112 0.0056 �0.0363
EES – 47.39 45.87 23.10

University SAM-MRF

Class Name # sample b = 2 b = 0.5 b = 0.44

(b) Results for the University image
Trees 3064 89.95% 92.79% 92.56%
Asphalt 6631 96.79% 96.18% 93.94%
Bitumen 1330 99.62% 99.40% 99.25%
Gravel 2099 84.99% 89.04% 88.90%
Sheet 1345 99.93% 99.93% 99.93%
Shadow 947 98.31% 99.89% 99.89%
Bricks 3682 99.78% 99.19% 99.24%
Meadows 18,649 96.51% 91.96% 91.95%
Bare Soil 5029 100.00% 100.00% 100.00%

Kappa – 0.9540 0.9334 0.9287
OA – 96.45% 94.75% 94.38%
AA – 96.21% 96.49% 96.18%
MI – 0.1459 0.1501 �0.0442
EES – 124544.76 117030.96 46814.40
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often exhibit compact shape and a relatively large size, whereas
natural classes have unpredictable shapes and fragmental appear-
ances. When considering the overall performance, the selected b
obtained slightly lower values in terms of OA, AA and Kappa. In
turn, when considering two simple-independent metrics such as
MI and EES, the proposed method achieves the best segmentation
performance.

According to the previous analysis, we can draw the following
conclusions: the proposed selection method can select an effective
parameter for the proposed MRF-based methods; combined with
the proposed MRF-based methods, the optimized maps can
achieve a good tradeoff among classes with various sizes and geo-
metric structures, preserving the shapes of small-size objects.
5.4. Comparisons among postprocessing methods

In this section, the proposed NED-MRF method is compared
with several state-of-the-art post-classification optimization
methods, including edge-preserved filtering (EPF) (Kang et al.,
2014), a recently proposed relearning primitive co-occurrence
matrix (Relearning) (Huang et al., 2014), weighted majority vote
(WMV) (Büschenfeld and Ostermann, 2012), multinomial logistic
regression with subspace projection (MLR-SP) (Li et al., 2012)
and the MRF-based spatial regularization method with gradient
information (Gradient-MRF) (Tarabalka et al., 2010). Generally,
these methods can be divided into two categories: local and global.
EPF and WMV are labelled as local filtering-based methods, as they
only consider spatial-contextual information in a local neighbor-
hood. Spatial models of the MLR-SP, Gradient-MRF and NED-MRF
methods were developed from the classic MLL model (Derin and
Elliott, 1987), and the methods aimed to maximize the posterior
over the entire random field. Therefore, these three methods
belong to the global regularization category. R-PCM can also be
seen as a global optimization method, as it involves a gradual
re-learning process of class frequency and spatial arrangement.

In order to achieve a fair comparison, all methods start from the
same initial SVM probabilistic output and are assessed based on
the same test samples. The detailed experimental setting of initial
classifications can be found in the previous Section 4.1. Optimal
parameters for these baseline methods were predefined or tuned
following the original works. The experimental settings are sum-
marized as follows. For the EPF, the guide images are the first three
bands for the multispectral images and the first three principal
components for the hyperspectral images, respectively; the regu-
larization parameter e and the local window radius w are set as
[0.01, 4] for University, Hainan and Wuhan images, and as [0.01,
8] for the Salinas image. For the WMV, a spatial bandwidth
HS = 5, a spectral (range) bandwidth Hr = 5 and a minimum region
size M = 20 are considered. For the Relearning method, we consider
a window radius w = {3, 4, 5}. For the MLR-SP and Gradient-MRF
methods, the optimal smoothing parameter b is selected in the
range {0.5, 1, 1.5, 2, 3, 4}, which corresponds to the highest OA.
We should emphasize that the only predefined parameter in our
proposed method is the initial search range of the smoothing
parameter, and it was set to the same value across all experiments.

As shown in Table 7, all methods employed improve the raw
classification to different degrees. The increments of OA achieved
by the NED-MRF method are 14.4% for the University data set,
10.8% for the Salinas data set, 4.2% for the Hainan data set, and
3.8% for the Wuhan data set, respectively.

When comparing the 6 postprocessing algorithms, the proposed
method NED-MRF yields the best performance with respect to



Table 7
Quantitative classification/segmentation evaluation of the EPF (Kang et al., 2014), WMV (Büschenfeld and Ostermann, 2012), Relearning (Huang et al., 2014), MLR-SP (Li et al.,
2012), Gradient-MRF (Tarabalka et al., 2010) and NED-MRF methods based using the four data sets with OA, KAPPA, AA, MI, EES and MC metrics. The best results are in bold and
the second best results are underlined.

Image Name Metric Raw Local method Global method

EPF WMV R-PCM MLR-SP Gradient-MRF NED-MRF

University OA 84.26% 95.74% 97.61% 93.28% 91.01% 95.02% 98.67%

Kappa 81.05% 94.53% 96.88% 91.46% 88.06% 93.65% 98.24%

AA 88.38% 96.80% 97.75% 94.79% 89.46% 96.09% 98.13%

MI 0.3965 0.0964 0.0344 0.3358 0.1703 0.1964 0.0767
EES 6.02E+05 8.83E+04 7.72E+04 4.04E+05 1.79E+05 1.40E+05 8.07E+04
MC – 6.26E+06 9.69E+06 3.70E+07 9.85E+06 1.08E+07 4.73E+06

Salina OA 88.50% 97.97% 97.62% 97.50% 95.70% 98.88% 99.42%

Kappa 87.57% 97.76% 97.37% 97.23% 95.23% 98.76% 99.36%

AA 94.33% 98.95% 98.30% 98.27% 95.25% 99.10% 99.31%

MI 0.5194 0.1645 0.1256 0.4190 0.1734 0.3865 0.0109

EES 4.07E+05 5.57E+04 5.51E+04 2.43E+05 5.77E+04 1.03E+05 3.28E+04

MC – 6.96E+05 6.81E+05 9.13E+05 6.94E+05 7.08E+05 6.67E+05

Hainan OA 93.62% 97.19% 96.45% 97.76% 95.63% 88.48% 97.88%

Kappa 92.28% 96.56% 95.66% 97.25% 94.67% 85.82% 97.39%

AA 93.42% 96.83% 96.16% 97.73% 94.88% 89.04% 96.44%

MI 0.2286 �0.0068 0.0805 0.0766 0.0033 0.0125 �0.0362

EES 1.36E+04 7.03E+01 1.12E+02 3.27E+02 3.56E+01 4.87E+01 2.28E+01

MC – 2.30E+07 2.04E+07 3.06E+07 1.57E+07 2.76E+07 1.67E+07

Wuhan OA 89.25% 93.27% 92.81% 94.69% 91.90% 85.25% 93.02%

Kappa 87.40% 91.99% 91.46% 93.68% 90.43% 82.07% 91.71%

AA 88.99% 91.98% 91.82% 94.48% 91.35% 81.17% 92.28%
MI 0.3045 0.0355 0.1485 0.1655 0.0337 0.1310 0.1375

EES 2.92E+04 5.05E+02 1.04E+03 2.47E+03 6.53E+02 6.49E+02 1.30E+03

MC – 1.74E+07 2.52E+07 5.05E+07 1.38E+07 1.86E+07 3.05E+07
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most metrics. However, especially, in terms of OA, AA and Kappa,
the established improvements seem not significant. This observa-
tion should also be attributed to the lack of the reference samples
that are located around the object boundaries. However, according
to MI, EES and MC, we still can conclude that, the proposed method
is superior to the compared methods, especially in boundary areas.

Moreover, the whole maps and local details are also illustrated
for further visual inspection [see Figs. 10–12]. In general, the visual
gaps among different algorithms are quite obvious. The MRF-based
Fig. 10. Classification maps for different optimization algorithms with the University data
details include: visual improvements of all algorithms over the initial map (a), geomet
oversmoothness of the classic spatial model (e), noisy pixels distributed along class bou
methods exhibit superior performance with regards to the local-
based regularization methods, such as EPF and WMV.

When considering local-based regularization methods, the EPF
and WMV methods can retain small objects very well, whereas
some land-cover classes with large size cannot be identified com-
pletely, which can be attributed to the fixed size of the filter kernel
when sliding over the image plane. Small objects can benefit from
small kernels, but large objects may need large kernels to properly
characterize spatial context. Therefore, the main weakness of the
set. The corresponding quantitative statistics are presented in Table 7. Noteworthy
rically less correct class boundaries in local optimization methods (b) and (c), the
ndaries in (d) and (f), and visibly superior performance of NED-MRF (g).



Fig. 11. Classification maps for different optimization algorithms with the Salinas data set. The corresponding quantitative statistics are presented in Table 7.

Fig. 12. (a) A selected patch of the Wuhan image represented as a three-band false color composite. (b) Initial classification result. (c)–(h) Outputs of different optimization
algorithms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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local filtering-based methods is that a single scale parameter (i.e.,
the kernel size in EPF, and the minimum of region size in WMV)
cannot preserve land-cover objects with different sizes.

The global optimization methods perform differently near the
object boundaries. As shown in Fig. 10(h), ‘‘cars” pixels are mixed
with ‘‘tree” pixels. As ‘‘car” is an uninterested land class, we hope
it can be filtered, meanwhile, the boundaries of the ‘‘tree” class
are still well preserved. This goal only can be achieved by the pro-
posed NED-MRF method. A similar conclusion also can be drawn
from Figs. 11 and 12. As for MLR-SP [see Fig. 12(e)], overall high
accuracies are achieved at the cost of introducing some distortions
of object boundaries. the MLR-SP method embeds an isotropic spa-
tial model. This model forcedly labelled neighboring pixels
with the same class labels, even for the pixels located close to
the boundaries. On the contrary, aiming at edge preservation,
the Gradient-MRF method integrated gradient information into
the spatial energy function. As shown in Figs. 10(f) and 11(f), the
output results benefit from this integration, but still suffered from
the presence of noisy pixels near the boundaries. This problem is
attributed to the inadequate exploration of spatial context infor-
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mation: the pair-site interaction of the Gradient-MRF method only
incorporates the gradient information in a small neighborhood
(typically, 4- or 8-connected neighborhoods), rather than spatial
relationships among different land classes. The proposed model
solves this problem by incorporating global class co-occurrence
dependency into the spatial energy function. As shown in Fig. 10
(g), the NED-MRF method yields the most complete object charac-
terizations, while effectively smoothing noisy class labels around
object boundaries.

The Wuhan data set, which contains dense buildings with a
slightly lower spatial resolution (5.8 m), is presented as a special
case in Table 7, where the relearning method achieved the highest
OA, Kappa and AA. To further explore this case, patches of the
results, as well as the image, are illustrated in Fig. 12. As can be
seen, different optimization methods are effective for smoothing
the raw map to different extents. However, EPF, WMV, Gradient-
MRF and MLR-SP produced oversmoothed shadows and narrow
roads when achieving their own highest accuracies. In contrast,
the relearning method generated a quite noisy classification map
and a pepper-and-salt effect still can be observed. This limitation
may be caused by the absence of spatial correlation description
between a classified pixel and a specific surrounding pixel. The
method sums up multidirectional spatial correlation matrices into
one matrix, and tries to iteratively relearn this matrix. As this
matrix does not carry directional information, the relearning pro-
cess cannot guarantee that a new class assignment on neighboring
pixels obeys a proper spatial relationship. The best results accord-
ing to visual inspection are produced by NED-MRF. Although this
method exhibited a slightly lower overall accuracy, the structures
and shape of small and narrow objects (e.g., shadows and stand-
alone buildings) are well preserved.

Another interesting observation from Fig. 12 and Fig. 11 is that,
although the raw maps are quite noisy, there are no large misclas-
sified regions. As the proposed method only considered interrela-
tionships between sites maintained by a 8-neighborhood system,
if such large misclassified regions exist, the proposed method still
can produce smoothed regions, but cannot reconstitute their true
class labels.

Based on the above assessment, we can reach the following con-
clusions: the smoothness prior (i.e., the class labels in a neighbor-
hood of the image lattice generally do not change abruptly) is a
basic premise to optimize the classification results. When consid-
ering different optimization schemes, the global methods, e.g.,
MRF-based methods, can outperform the local methods such as
EPF and WMV. Although a simple spatial prior model in the
MRF-based methods (i.e., MLL) already yielded satisfactory
enhancements in terms of overall accuracy, more sophisticated
models capable of dealing with spectral discontinuities and class
co-occurrences are still required in order to avoid oversmoothing.
The new spatial model integrating both spectral dissimilarity and
class co-occurrence dependency provided by this exhibits superior
performance in the task of regularizing pixels and avoiding
oversmoothness.
6. Conclusions and future lines

Markov random fields (MRFs) provide a flexible theoretical
framework for of optimizing noisy classification maps in remote
sensing imagery. The classic MRF model assumes uniform smooth-
ness over the whole image lattice. This assumption is often vio-
lated at the image areas exhibiting discontinuities, e.g., pixels
around object boundaries. With the ultimate goal of adopting the
smoothness prior while preserving discontinuities properly, this
paper proposes a novel two-step MRF method for remote sensing
image post-classification. By integrating local spectral dissimilar-
ity, the first step of the proposed method can preserve discontinu-
ities and characterize the spatial relationships among different
classes. By taking the class co-occurrence dependency into
account, the objective of the second step is to smooth the noisy
pixels around object boundaries. The proposed method is tested
using four hyperspectral/multispectral data sets. The experimental
results allowed us to reach the following conclusions:

(1) Among the four considered spectral metrics, the normalized
Euclidean distance (NED) achieves the best performance in
most cases. The results are quite robust against different
landscape scenes and sensor types.

(2) A initial pixelwise classification is expected to provide a map
with small misclassified regions. Large misclassified regions
can still be smoothed, but cannot be corrected into the true
labels, as the proposed method is built on a small second-
order neighborhood system.

(3) In general, global optimization methods are superior to local
optimization methods. Among all global methods, the pro-
posed NED-MRF method achieves the best performance in
most cases. Unlike other MRF-based methods that exhibit
oversmoothing or noisy boundaries while achieving the
highest classification accuracies, the proposed method can
not only properly smooth the initial classification and elim-
inate the salt-and-pepper effect, but also significantly
improve the classification accuracy.

The previous observations suggest the effectiveness of the pro-
posed method in the task of post-classification of remotely sensed
images. In the future, we will pursue efficient implementations of
the proposed method using high performance computing architec-
tures. We will also provide additional comparisons using different
types of remote sensing images.
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