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Megacities have evolved at an unprecedented rate under the pressure of urban population growth and economic
development, particularly in the developing countries. For instance, many cities in China are experiencing a large
number of rapid but subtle changes resulting fromurban infrastructure construction. Information concerning such
small changes is imperative for understanding the local environment and human activity, and can also provide key
insights for urban planners. Undoubtedly, high-resolution remotely sensed data should play an essential role for
the monitoring of such subtle changes, due to the improved observation capacity of the spatial details. However,
few studies have investigated high-resolution data for change detection at a large geographic scale, due to the
multi-temporal heterogeneity of the data, e.g., spatial mis-registration, parallax distortion for high architectures,
and the different viewing angles. In this study, we attempted to fill this gap and resolve these problems by the
use of multi-view ZY-3 satellite data, which are used to generate multi-temporal orthographic images through
photogrammetric derivation. In the meantime, we present a general framework for precise urban change analysis
in a multi-level (pixel, grid, and city block) approach. Two typical Chinese megacities—Beijing and Wuhan—are
chosen in the experiments. The results confirm the accuracy of the proposed multi-level method for monitoring
subtle urban changes, achieving Kappa coefficients of ~0.8 at the pixel level and a correctness of 93–95% at the
grid level. The landscape analysis further indicates that the rapid urban construction led to greater fragmentation
and spatial heterogeneity of buildings and decreasedminimum distance between building patches (by ~1.0 m be-
tween2012 and 2013).Moreover, the performances of ZY-3 and Landsat for themonitoring of subtle urban chang-
es are compared, revealing that the high-resolution sensor—ZY-3 (2.5 m)—is essential for precisely detecting
subtle urban changes, whereas the Landsat data (30 m) are not sensitive to most of the subtle changes that
occur in the urban areas.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Urban areas, which cover only 0.5% of the Earth's land surface
(Schneider et al., 2009), host more than half of the world's population,
and the urban population is projected to continually increase, particu-
larly in developing countries (UN, 2014). As human-dominated
habitants, themegacities have experienced a rapid process of urban de-
velopment, resulting in a series of negative effects, e.g., resource
depletion, land degradation, traffic congestion, environmental and eco-
logical problems, and urban heat island effects (Lasanta and
Vicente-Serrano, 2012; Ma et al., 2012; Susaki et al., 2014; Zhou et al.,
and Information Engineering,
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2014). In-depth studies of urban changes are essential to promote sus-
tainable urbanization (Dewan and Yamaguchi, 2009; He et al., 2006).

China, as the largest developing country, has been undergoing rapid
and frequent changes (Fig. 1) due to the “reform and opening-up”policy
(Lu et al., 2007). In addition, the pace of urbanization in a lot of Chinese
cities has been further accelerated due to the great reliance on the rev-
enue from land transactions and real estate construction (Bai et al.,
2011). Specifically, land-related incomes can account for 30–70% of a
city's financial revenue (Bai et al., 2014; Lin, 2007). China's macro-con-
trol policy, i.e., the central government on behalf of the Chinese public
controls and empowers local governments to make land-use decisions,
was implemented in order to standardize the landmarket (Long, 2014).
However, authorities uncovered and investigated a total of 53,000 cases
of illegal land use across the country in 2010 alone (ChinaDaily, 2011).
Moreover, large areas of land (up to 113 km2), which could provide
housing for 1 million households, were found idle nationwide after
land developers purchased land-use rights (People'sDaily, 2010).
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Fig. 1. An example from Wuhan, China, showing the subtle changes of urban land cover and landscapes.
(Source of images: Google Maps.)
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Generally speaking, a large number of land parcels have either been ille-
gally occupied or remain idle due to the lack of public participation and
the unclear demarcation for land development projects, leading to inef-
fective use of land resources and challenges to land-use management
(Koroso et al., 2013; Li, 2016).

Recently, remote sensing techniques have shown their notable advan-
tages inmonitoring urban change, as a result of the large geographic cov-
erage, rich spatial details, and high temporal frequency (Baus et al., 2014).
A number of studies concerning urban development have been carried
out using remote sensing data, such as the Advanced Very High Resolu-
tion Radiometer (AVHRR) data of the National Oceanic Atmospheric Ad-
ministration (NOAA) (Kressler and Steinnocher, 1999; Stow and Chen,
2002), the Moderate Resolution Imaging Spectroradiometer (MODIS)
data (Lunetta et al., 2006; Mertes et al., 2015), Landsat data (Schneider,
2012; Shalaby and Tateishi, 2007), and the Defense Meteorological Satel-
lite Program's Operational Linescan System (DMSP/OLS) nighttime light
data (Liu et al., 2012;Ma et al., 2012). It should be noted that these studies
have largely focused on the use of coarse- or moderate-resolution data,
which are effective for monitoring the macro changes in a large-scale
area, but can miss subtle urban changes (Yu et al., 2016).

Therefore, precise urbanmonitoring, which can detect subtle changes
at a very fine scale, is of vital importance for regulating urban land cover/
use and landscapes. The availability of high spatial resolution remote
sensing data can support such detailed urbanmonitoring, e.g., the demo-
lition and construction of urban infrastructure, and hence allow in-depth
change analysis for landscapes. However, high-resolution change detec-
tion has rarely been studied in the existing literature, due to the heteroge-
neity existing in themulti-temporal high-resolution imagery (e.g., spatial
mis-registration, parallax distortion for high architectures, illumination
conditions, and different viewing angles) (Stumpf et al., 2014). These
problems make it difficult to accurately detect micro changes from
high-resolution imagery, leading to a large number of false alarms, espe-
cially for pixel-based processing. In this regard, the ZiYuan-3 (ZY-3) satel-
lite, which is China's first civilian high-resolution three-line array stereo
satellite (launched in January 2012), has the ability to providemulti-tem-
poral orthographic images, so as to minimize the spatial inconsistency as
much as possible using themulti-viewmode. In thisway, it becomes pos-
sible to perform change detection from the high-resolution and multi-
temporal orthographic images, courtesy of the merits of the multi-view
images.

With respect to the change detectionmethods, althoughmuchprog-
ress has been achieved in recent years (Du et al., 2013; Tewkesbury et
al., 2015), it is a big challenge for accurate multi-temporal classification
and change detection using high-resolution images, especially in the
complex urban scenes. Most of the current change detection algorithms
employ pixel-based methods (Song et al., 2016). However, it is widely
agreed that pixel-based approaches do not exploit spatial or contextual
information, and can be subject to the “salt and pepper” effect (Hussain
et al., 2013; Yu et al., 2016). Therefore, in this study, amulti-level frame-
work (i.e., pixel, grid, and block) for change detection is presented, in
order to make full use of spatial details in high-resolution images and
analyze urban changes at various scales.

In the meantime, how to perform accurate multi-temporal classifi-
cation in an effective way, is also an essential issue, which provides
underlying basis for the subsequent change analysis. For the high-reso-
lution image classification, it is not sufficient to only consider spectral
bands. In order to improve separability among spectrally similar objects
(e.g., soil, roofs, and roads), researchers have proposed a series of spatial
and structural features (e.g., pixel shape index (Zhang et al., 2006),
morphological profiles (Mura et al., 2010), and textural metrics
(Pacifici et al., 2009)). However, in most cases, it seems impossible to
select one optimal feature set for different objects and scenes (Huang
and Zhang, 2013). In addition, different spatial features can compensate
each other in classifying different land covers by characterizing image
properties from different perspectives. Consequently, multi-feature
image classification is attempted in this paper, in order to improve in-
terpretation efficacy of high-resolution imagery. On the other hand,
conducting classification in each time series separately is the most ad
hoc way in current literature (El-Kawy et al., 2011; Tarantino et al.,
2016). In this way, sample collection is required for each separated clas-
sification process, which is time-consuming and labor-intensive, espe-
cially at a large geographic scale. Furthermore, it hampers the
possibility of classifying time series of images accurately and consistent-
ly in a more automated fashion. Considering this, we aim to propose a
sample migration strategy to reduce work in sample collection.

In summary, the objective of this study is to address the key research
questions for change detection using high-resolution multi-view and
multi-temporal satellite imagery, concerning how to

(1) minimize the spatial heterogeneity existing in the multi-tempo-
ral high-resolution imagery;

(2) conduct a multi-temporal classification in an efficient way; and
(3) analyze multi-level urban changes.

The proposed methodology is conducted in two representative Chi-
nese cities—Beijing andWuhan—over a short time period (2012–2013),
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in order to test the performance of the proposed method in detecting
subtle urban changes.
2. Study sites and data sets

In our study, two typical megacities in China—Beijing and
Wuhan—were chosen for the monitoring of urban changes. Beijing,
which had a population of over 20 million in 2012 (Beijing Municipal
Statistics Bureau, 2013), is the capital of China, and the center for Chi-
nese political and cultural activities and international exchanges. It is
an international metropolis located in north China, characterized by
the typical chessboard shape of the city structure pattern. In order to
protect the historic and cultural conservation areas in the Old City of
Beijing, large-scale demolition and reconstruction is forbidden in the
Old City (Shin, 2010). Therefore, the city center of Beijing is appropriate
for our research into subtle urban change detection.

The other study area,Wuhan, the capital of Hubei province, is one of
the biggest metropolises in central China. Wuhan is located in the mid-
dle-lower Yangtze Plain, and had a population of over 10million in 2012
(WuhanMunicipal Statistics Bureau, 2013). The unique locational char-
acteristics of Wuhan, which is referred to as the “thoroughfare to nine
provinces”, have resulted in it becoming China's largest inland rail and
road transportation hub (Huang and Wei, 2014), providing favorable
conditions for the rapid development of the city.

ZY-3 remote sensing data were used for monitoring the urban
changes. The parameters of the ZY-3 satellite are shown in Fig. 2(b). A
notable advantage of ZY-3 is that it carries three panchromatic cameras
pointing in forward (3.5 m), backward (3.5m), and nadir (2.1 m) direc-
tions, as well as a multispectral (5.8 m) camera (Wang et al., 2014)
(Fig. 2(a)). These merits make ZY-3 an excellent platform for providing
multi-temporal high-resolution orthographic imagery with the in-track
multi-view mode. Furthermore, the ZY-3 satellite can provide wall-to-
wall coverage of the area between 84 degrees north and 84 degrees
south of the equator, which covers almost all the area of human habita-
tion. Hence, we can continuously and stably monitor detailed urban
dynamics at a large geographic scale with the ZY-3 multi-view images.

ZY-3 images with orthorectification and pansharpening pre-pro-
cessing (see Section 3.2) are shown in Fig. 3(a) and (b), respectively,
for Wuhan and Beijing. The digital surface models (Fig. 3(c) and (d))
derived from the ZY-3 multi-view images are also displayed. The
images covering the city centers of Beijing and Wuhan were acquired
in 2012 and 2013, corresponding to 8000 × 7500 pixels (375 km2),
and 5884 × 6715 pixels (247 km2), respectively. Since the ZY-3 satellite
was launched in 2012, long time series data are not yet available.
However, the existing data can be used to routinely monitor annual
urban changes.
Fig. 2. (a) Schematic diagram showing the imaging parameters of the ZY-3 satellite. The thr
directions can simultaneously collect multi-view panchromatic images, allowing for stere
panchromatic bands, MS = multispectral bands, FW= forward, BW= backward, and ND= n
3. Methodology

3.1. Overview

In this study, we first conduct the change detection at the pixel level,
as this is able to accurately indicate the urban change trajectories. The
accuracy of the high-resolution pixel-level change detection can be
guaranteed by themulti-viewmode of the ZY-3 images and the sophis-
ticated multi-feature image interpretation framework. In spite of this,
the pixel-based approach can result in a number of commission errors
and the “salt-and-pepper” effect (Yu et al., 2016). Therefore, we further
aggregate the pixel-based result into the grid-based one, which is called
“hot-spot” change detection (Pacifici and Del Frate, 2010; Wen et al.,
2016), in order to mitigate the salt-and-pepper noise occurring at the
pixel level. Subsequently, above the grid level, change detection at the
landscape level is explored by considering the changes of the composi-
tion and configuration in each city block, which is a basic management
unit for Chinese cities. Identifying the subtle change information at this
level ismeaningful for urban planning. Although a lot of papers have ad-
dressed landscape analysis over urban areas (Li et al., 2011; Li et al.,
2016), few studies have investigated the change of the landscape as cit-
ies grow, especially based on high-resolution images (Liu and Yang,
2015). This research attempts to fill this gap.

In summary, this study presents a multi-level framework (pixel,
grid, and city block) for change detection from multi-temporal and
multi-view high-resolution imagery. The key steps of the proposed
scheme are: 1) generation of multi-temporal orthographic images
from ZY-3 multi-view data; 2) accurate interpretation of the high-reso-
lution imagery based on multi-feature interpretation; 3) multi-tempo-
ral land-cover mapping with a sample migration strategy; and 4)
multi-level urban dynamics monitoring (Fig. 4).

3.2. Generation of multi-temporal orthographic images

As China's first civilian high-resolution satellite, ZY-3, which carries
multiple optical cameras (i.e., three cameras in forward, nadir, and back-
wardmodes), can acquiremulti-view images over the same areawithout
body tilting (Fig. 2(a)). This notable advantage enables us to obtainmulti-
temporal orthographic images, as well as photogrammetrically derived
digital surface models (DSMs). Courtesy of the multi-view mode of the
ZY-3 satellite, it has become possible to conduct pixel-based change de-
tection using high-resolution images. The procedure for generating the
DSMs and orthographic images is as follows.

3.2.1. DSM generation
The DSMs used in this study were processed by the hierarchical

semi-global matching (SGM) method (Hirschmuller, 2008). Firstly, a
ee panchromatic cameras of the ZY-3 satellite pointing in forward, backward, and nadir
o mapping on the same orbital pass. (b) The parameters of the ZY-3 satellite (PAN =
adir).

Image of Fig. 2


Fig. 3.Overview of the study sites and data sets: (a) and (b) are the orthographic images for the central areas of the twomegacities—Wuhan and Beijing—respectively; (c) and (d) are the
corresponding digital surface models.
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quasi-epipolar stereo pair was generated by performing first-order bias
correction (Fraser and Hanley, 2003) on the stereo pairs. The disparity
map of the epipolar images can be obtained by a hierarchical SGM,
where a coarse-to-fine strategy is adopted by performing the matching
in each pyramid image, in order to increase the efficiency, in terms of
Fig. 4. Workflow showing the procedure of the proposed method for urb
time and memory, of the processing (Rothermel et al., 2012). The 3D
point clouds can be subsequently generated through forward intersec-
tion followed by raster grid resampling. Finally, inverse distance inter-
polation was used to fill the missing pixels on the building edges
caused by matching failure (Qin, 2014).
an landscape monitoring (nDSM: normalized digital surface model).

Image of Fig. 3
Image of Fig. 4


Fig. 5. The multi-feature classification framework for urban land-cover mapping.
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DSMs describe vertical attributes of the Earth's surface, including the
terrain and elevated land-cover objects. NormalizedDSMs (nDSMs), de-
lineating the height of objects above the Earth's surface by removing to-
pographic effects, can be calculated using the top-hat morphological
filter (Qin and Fang, 2014; Tian and Reinartz, 2013). In this study, in
order to evaluate the accuracy of the nDSMs, 100 ground points and
100 off-ground points (i.e., buildings) were randomly selected. The cor-
responding reference height values of the off-ground points were ob-
tained from the local urban planning department. The root-mean-
square error (RMSE) was used to evaluate the overall error of the
nDSM derivation.

3.2.2. Orthorectification
Orthorectification is defined as the spatial manipulation that pro-

jects each pixel from satellite images onto a ground reference system.
Table 1
The multiple features considered in this study.

Features Principle

Texture
Gray level co-occurrence matrix
(GLCM) (Haralick et al., 1973)

The GLCM is defined as a matrix, with each entry e
probability of the pair of gray levels that occur in a
and direction. A set of textural measures such as h
(HOM), entropy (ENT), and contrast (CON) can th
based on this co-occurrence matrix to delineate th
statistics of the images.

Morphology
Differential morphological profiles
(DMPs) (Aytekin and Ulusoy,
2011; Benediktsson et al., 2003)

DMPs can record image structural information by
slope of the opening-closing profiles for every step
parameters. They can be viewed as the shape spect

Multiple indices
Morphological building index
(MBI) (Huang and Zhang, 2011)

The MBI is an effective index to highlight building
high-resolution imagery by representing the spect
properties of buildings (e.g., brightness, contrast, s
directionality) with a series of morphological oper

Morphological shadow index
(MSI) (Huang and Zhang, 2012a)

The derivation of the MSI is based on the fact that
low reflectance but high local contrast; hence, the
the dual function of the MBI, i.e., the black top-hat
profiles, to highlight the shadow structures.

Urban complexity index (UCI)
(Huang and Zhang, 2012b)

The UCI, constructed on the basis of the energy fun
wavelet transformation, is able to distinguish betw
classes (e.g., buildings and roads) and natural class
soil, trees, and grass) based on the fact that natura
relatively smaller spatial variation than spectral va
urban classes show more variation in the spatial d

Normalized difference vegetation
index (NDVI) (Huete et al., 2002)

The NDVI is constructed by exploiting the great dif
spectral reflectance of vegetation in the near-infra
bands.

Normalized difference water index
(NDWI) (McFeeters, 1996)

The NDWI is used to enhance the water feature ba
principle that water has strong reflectance in the g
strong absorption in the near-infrared band.
In this study, the perspective distortion of the satellite images was
corrected to a parallel projection using the generated DSM. To avoid oc-
clusions, all the pixels from the stereo images contributed to the
resulting orthographic image. The depth-buffer algorithm (Merrell et
al., 2007) was used to accommodate the occluded area.

3.3. Accurate land-cover mapping

Our goal was to achieve a land-cover classification that was as accu-
rate as possible, in order to guarantee the effectiveness of the urban dy-
namics monitoring. To achieve this, a multi-classifier ensemble method
was adopted since it can exploit the strengths of the individual classi-
fiers and obtain an enhanced performance (Mangai et al., 2010;
Woźniak et al., 2014b).More specifically, multiple classifiers, containing
different spatial features and spectral bands, were integrated, through
Formula

stimating the
certain distance
omogeneity
en be extracted
e textural

HOM ¼ ∑
i
∑
j

f ði; jÞ
1þ ∣i− j∣

ENT ¼ ∑
i
∑
j
f ði; jÞ logð f ði; jÞÞ

CON ¼ ∑
i
∑
j
f ði; jÞði− jÞ2

where f(i,j) is the probability of the pairs of gray levels i and j that
occur in a specified distance and direction.

measuring the
of the scale
rum of an image.

DMP ¼ DMPO ¼ jγλðIÞ−γλ−1ðIÞj
DMPC ¼ jϕλðIÞ−ϕλ−1ðIÞj

�

where γλ(I) and φλ(I) represent morphological opening and
closing by reconstruction for an image I, with λ being the scale
parameter of the structural element.

structures from
ral-spatial
ize, and
ators.

MBI ¼
∑
d;s

DMPW−THðd; sÞ
D�S

where DMPW-TH denotes the differential morphological profiles of
the white top-hat, and d and s indicate the scale and direction of
the structural element, respectively.

shadows show
MSI is defined as
morphological

MSI ¼
∑
d;s

DMPB−THðd; sÞ
D�S

where DMPB-TH denotes the differential morphological profiles of
the black top-hat in contrast to the white top-hat in the MBI.

ction of the 3-D
een urban
es (e.g., water,
l classes have a
riation, but
omain.

UCI ¼ EðHLLÞþEðLHLÞþEðHHLÞ
EðLLHÞþEðLHHÞþEðHLHÞ

E f ¼ ∑
i
∑
j
∑
m

ð f ði; j;mÞÞ2

where Ef is the energy function of sub-band f of the 3-D wavelet
decomposition, and i, j, m denote the coordinates in the
spatial-spectral domain; E(**H) and E(**L) indicate the spectral
variation, spatial variation with high- and low-pass filters in the
spectral domain, respectively.

ference in the
red and red

NDVI ¼ NIR−R
NIRþR

where NIR, R is the reflectance in the near-infrared and red bands,
respectively.

sed on the
reen band but

NDWI ¼ G−NIR
GþNIR

where G, NIR is the reflectance in the green and near-infrared
bands, respectively.

Image of Fig. 5


Table 2
Rules for the classification post-processing.

Mixed classes
Class 1 & Class 2a

Attributes Principles Rules
Class 1 → Class 2b

Buildings & road
Buildings & soil

Relative border (RB); distance
to shadow (DS); height (H)

Buildings and shadows are spatially adjacent, and buildings
have a relatively large height.

✓ Class (O) = buildings
✓ RB to nearest road/soil object N T1
✓ DS N 0
✓ H = 0
Buildings → road/soil
✓ Class (O) = road/soil
✓ RB to nearest building object N T1
✓ DS = 0
✓ H N 0
Road/soil → buildings

Shadow & water Relative border (RB); distance
to buildings (DB)

Buildings and shadows are spatially adjacent. ✓ Class (O) = shadow
✓ RB to nearest water object N T2
✓ DB N 0
Shadow → water
✓ Class (O) = water
✓ RB to nearest shadow object N T2
✓ DB = 0
Water → shadow

Trees & grass Relative border (RB); height (H) Trees are always higher than grass. ✓ Class (O) = trees
✓ RB to nearest grass object N T3
✓ H = 0
Trees → grass
✓ Class (O) = grass
✓ RB to nearest trees object N T3
✓ H N 0
Grass → trees

a The possible misclassification between Class 1 and Class 2 is labeled as “Class 1 & Class 2” in the table.
b “Class 1→ Class 2” indicates that Class 1 is reclassified as Class 2when the listed conditions are satisfied.
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which the multiple features were effectively fused. The whole process-
ing chain is shown in Fig. 5, and a detailed description of each step is in-
troduced in the following subsections.

3.3.1. Multi-feature extraction
In remote sensing image classification, different features (e.g.,

spectral, textural, and morphological features) can describe image
Fig. 6. The framework for multi-temporal land-cov
characteristics from different perspectives (Zhang et al., 2012). Spectra
reflect the physical attributes of land-cover classes and play a key role
in intuitively describing the land covers (Zhao et al., 2012). Textural fea-
tures are able to represent the spatial distribution of image primitives,
such as smoothness, coarseness, regularity, contrast, or other patterns
(Peña-Barragán et al., 2011; Trias-Sanz et al., 2008). Recently, mathe-
matical morphology has been the subject of much attention for image
er mapping with a sample migration strategy.

Image of Fig. 6


Fig. 7. The multi-level analysis of urban dynamics.
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classification and urbanmapping fromhigh-resolution data (Plaza et al.,
2009; Rogge et al., 2007; Serna andMarcotegui, 2014; Tuia et al., 2011).
This approach involves extracting the structural information through
analyzing the spatial relationship between groups of pixels with a series
of structural elements (Benediktsson et al., 2003). In addition, a multi-
index feature set was considered in this study, where a set of low-di-
mensional information indices (e.g., buildings, vegetation, water, and
shadow indices) were used to represent the complex urban scenes
(Huang et al., 2014a). A detailed description of the features considered
in this research is provided in Table 1.

3.3.2. Multi-feature fusion
A key issue for multi-feature image classification is how to effective-

ly integrate and interpret the multiple feature sources, e.g., spectral,
Table 3
The metrics for landscape configuration considered in this study.

Category Metric Description

Area-edge Largest patch index (LPI) The percentage of the total landscape
area that is comprised by the largest
building patch.

Edge density (ED) The length of all the building patches per
unit area.

Mean patch area (MPA) The average area of the building patches
within a city block.

Standard deviation of
patch area (SDPA)

The standard deviation of the area of the
building patches within a city block.

Shape Mean shape index (MSI) The average shape complexity for the
building patches.

Standard deviation of
shape index (SDSI)

The standard deviation of the shape
complexity for the building patches.

Aggregation Mean nearest neighbor
distance (MNN)

The average distance of a building patch
to its nearest neighbor building patch.

SD of the mean nearest
neighbor distance
(SDMNN)

The standard deviation of the distance of
a building patch to its nearest neighbor
building patch.

Patch density (PD) The number of building patches per unit
area.

Cohesion index (CI) The indication of the connectedness of
the building patches.
textural, morphological, and multi-index features. The objective of the
multi-feature fusion is to adequately exploit the characteristics derived
from the various feature sources, and thus enhance the separability
among different land-cover classes, especially for the similar classes
(e.g., roads and buildings, shadow and water) (Dell'Acqua et al., 2004;
Huang and Zhang, 2010; Plaza et al., 2009). Typically, there are two ap-
proaches to multi-feature classification: the first is feature stacking, i.e.,
concatenating themultiple features into a single vector and then classi-
fying the stacked vector via a classifier (Bruzzone and Carlin, 2006;
Pagot and Pesaresi, 2008); the other approach is the multiple classifier
ensemble, i.e., feeding one feature source to a classifier, and then assem-
bling the multiple classifiers in a decision-fusion manner (Huang and
Zhang, 2010, 2013; Pelletier et al., 2016; Woźniak et al., 2014a; Zhang,
2015; Zhong and Wang, 2007). The latter approach, i.e., the multi-clas-
sifier ensemble, can overcome the over-fitting problem caused by the
high-dimensional feature space in the vector-stacking method (Du et
al., 2012; Liu et al., 2011). In addition, the multi-classifier method can
reduce the uncertainty by the information fusion at the decision level.

In this research, a recently developedmulti-feature land-covermap-
pingmethod for high-resolution imagery, i.e., the multi-feature classifi-
er ensemble, was adopted to generate the land-cover maps. Initially,
each classifier, referring to the textural, morphological, and multi-
index features, respectively, was performed to generate crisp (class
label) and soft (class probability) land-covermaps. The pixel-wise prob-
abilistic outputs were then spatially aggregated into objects generated
Table 4
Sample number and accuracy (correctness) of the land-cover mapping.

Accuracy % (sample #)

Beijing 2012 Beijing 2013 Wuhan 2012 Wuhan 2013

Water 87.9 (41219) 95.1 (45663) 91.1 (110114) 99.1 (103567)
Road 92.8 (68821) 86.1 (73038) 90.8 (106331) 92.5 (105846)
Buildings 83.4 (75672) 81.9 (80203) 87.2 (109487) 85.0 (104491)
Shadow 80.3 (35374) 79.2 (39317) 96.8 (55039) 95.8 (52383)
Soil 82.7 (17277) 81.4 (15581) 95.0 (55238) 90.1 (52037)
Trees 93.7 (14576) 92.5 (16730) 94.2 (54643) 83.0 (25520)
Grass 87.1 (13448) 82.9 (12584) 91.3 (56187) 94.9 (26182)
Overall 86.8 (266387) 85.4 (283116) 91.5 (547039) 92.0 (470026)

Image of Fig. 7


Table 5
Error matrix and accuracy assessment for the pixel-level change transitions in Beijing (UA = user's accuracy, PA = producer's accuracy, and OA= overall accuracy).

Classified data Reference data Total UA (%)

Soil → buil Buil → soil Soil → grass Grass → soil Water → grass No-change

Soil → buil 23 0 0 0 0 0 23 100.0
Buil → soil 0 25 0 0 0 5 30 83.3
Soil → grass 0 0 28 0 0 0 28 100.0
Grass → soil 0 0 0 25 0 0 25 100.0
Water → grass 0 0 0 0 23 0 23 100.0
No-change 7 5 2 5 7 25 51 49.0
Total 30 30 30 30 30 30 180
PA (%) 76.7 83.3 93.3 83.3 76.7 83.3
OA (%) 82.8
Kappa coefficient 0.79
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by adaptive mean-shift segmentation (Huang and Zhang, 2013). The
object-based outputs were calculated through a weighted combination
of the different soft land-cover maps. Specifically, the object-based
probabilistic outputs were calculated by:

Pk Oð Þ ¼
∑
x∈obj

∑N
f¼1P

k
f xð Þ∙wf xð Þ

N∙F
ð1Þ

w xð Þ ¼ ∑
K−1

k¼1
P̂k xð Þ−P̂kþ1 xð Þ
h i

∙
1
k

ð2Þ

where Pk(O) is the object-based class probability of object O for class k.
Pf
k(x) refers to the pixel-based class probability of pixel x for classifier f.

The number of pixels in the object and the number of base classifiers are
denoted by N and F, respectively. The classification certainty, which is
measured according to the descendingmulti-class probabilistic outputs,
i.e., p̂1ðxÞ;…; p̂kðxÞ;…; p̂KðxÞ, is employed as the weight value for the
multiple classifier fusion (denoted asw(x) in Eq. (2)). A larger value in-
dicates a more reliable classification.

3.3.3. Classification post-processing
In order to guarantee the accuracy of the land-cover mapping, a set

of post-processing rules were applied to further refine the initial classi-
fication result, according to implicit rules related to the spatial arrange-
ment or surrounding contexts (Hüllermeier and Brinker, 2008; Huang
et al., 2014b). Based on the object-based probabilistic output (Eq. (1)),
all the image objects can be divided into reliable and unreliable ones
(Eqs. (3) and (4)), and the post-processing rules (Table 2) were applied
to the unreliable objects only:

Oun : Pmax Oð ÞbT ð3Þ

Pmax Oð Þ ¼ max Pk Oð Þ; k ¼ 1;…;K
n o

ð4Þ
Table 6
Error matrix and accuracy assessment for the pixel-level change transitions in Wuhan (UA =

Classified data Reference data

Soil → buil Buil → soil Soil → grass Gr

Soil → buil 23 0 0 0
Buil → soil 1 23 0 0
Soil → grass 0 0 26 0
Grass → soil 0 0 0 20
Water → grass 0 0 2 0
No-change 6 7 2 10
Total 30 30 30 30
PA (%) 76.7 76.7 86.7 66
OA (%) 84.4
Kappa coefficient 0.81
where Pmax(O) is the object-based probability for thewinning label (i.e.,
themaximumprobabilistic output) for objectO. The threshold value T is
used to control the proportion of unreliable objects.

3.4. Multi-temporal land-cover mapping

In traditional multi-temporal land-cover mapping (Shalaby and
Tateishi, 2007; Yuan et al., 2005), each classification process in themul-
tiple time series is conducted separately. However, sample collection is
required for each classification process, which is time-consuming and
labor-intensive, especially at a large geographic scale. To tackle this
problem, we propose a multi-temporal land-cover mapping method
with a sample migration strategy (Fig. 6). The idea is to apply the un-
changed class labels from the classification at time 1 to classify the
image at time 2. The unchanged pixels (their positions and class labels)
that satisfy the three conditions (i.e., unchanged, reliable, and represen-
tative) are migrated to the image at time 2 and considered as training
samples. In this way, the cost of collecting the training samples can be
significantly reduced. As emphasized in Fig. 6, the sample migration
from time 1 to time 2 should refer to the unchanged, reliable, and repre-
sentative pixels:

• Unchanged: Naturally, the class labels of pixels whose land cover type
is not changed can be reused in the subsequent time phase. In this re-
search, change vector analysis (CVA) (Johnson and Kasischke, 1998)
was employed to make sure that the migrated samples were un-
changed. In this situation, therefore, we could simply set a strict
threshold for CVA (0.005 in this paper).

• Reliable: The degree of certainty for a pixel at time 1 can bemeasured
by its multi-class probabilistic output (Yager, 1992) (see Eq. (2)). The
certainty metric measures the confidence of the pixel label by calcu-
lating the differences between the probability values of the ordered
classes. The larger thedifference, thehigher the certainty. Only thepo-
sitions with high-certainty samples are considered.
user's accuracy, PA = producer's accuracy, and OA= overall accuracy).

Total UA (%)

ass → soil Water → grass No-change

0 0 23 100.0
0 0 24 95.8
0 0 26 100.0
0 0 20 100.0
30 0 32 93.8
0 30 55 54.6
30 30 180

.7 100.0 100.0
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• Representative: The spectral-spatial k-nearest neighbor (KNN)meth-
od (Rajadell et al., 2014)was adopted to further purify the reliable and
unchanged samples.

3.5. Multi-level urban dynamics monitoring

In order to conduct a comprehensive and systematic urban dynam-
ics analysis, three levels (Fig. 7) were considered in our study, i.e.,
pixel, grid, and city block. Courtesy of the multi-temporal orthographic
images provided by the ZY-3 sensor, we could achieve pixel-level change
analysis using high-resolution images, concerning the detailed change
trajectories. Post-classification comparison (PCC) (Aguirre-Gutiérrez et
al., 2012; Sesnie et al., 2008; Shalaby and Tateishi, 2007) was employed
at this level. Secondly, the grid-based analysis was aimed at highlighting
the changed areas (i.e., hotspots (Pacifici and Del Frate, 2010)), and, in
the meantime, reducing the salt-and-pepper effect from the pixel-level
processing. Finally, the landscape analysis using the city block as the
unit of calculation focusedon the changeof the composition (e.g., building
coverage ratio and vegetation fraction) and configuration (landscape con-
figuration metrics).

3.5.1. Pixel-level change transitions
PCC (Aguirre-Gutiérrez et al., 2012; Sesnie et al., 2008; Shalaby and

Tateishi, 2007) was performed to investigate the land-cover change
transitions, based on the multi-temporal land-cover maps. The PCC
method is considered effective in minimizing the impact related to the
atmospheric and environmental difference between multi-temporal
images (El-Kawy et al., 2011). Additionally, it can not only indicate
change but also provide “from-to” trajectories. It is well known that
the key issue for PCC is the error accumulation (Tewkesbury et al.,
2015). Therefore, in this research, a sophisticated land cover classifica-
tion chain was used, involving the multi-feature classifier ensemble,
post-processing, and the multi-temporal sample migration, in order to
guarantee the accuracy of the multi-temporal land cover maps.

3.5.2. Grid-level hot-spot change analysis
Grid-based hot-spot analysis is aimed at discovering changed areas

rather than analyzing individual pixels (Pacifici and Del Frate, 2010;
Wen et al., 2016), based on an assumption that changed areas in the
high-resolution images refer to patches instead of pixels. In this re-
search, the hot spots were further divided into two categories: i.e.,
changes of artificial objects and natural objects, according to the land
cover maps.

The hot-spot analysis is demonstrated in Fig. 7. Firstly, an image is
divided into a series of grids. Every grid is then further partitioned
into a set of non-overlapping cells, where the frequencies of the land
cover types in each cell are used to characterize the spatial distribution
and arrangement of the classes in the grid. The change intensity for each
grid is then calculated by comparing the multi-temporal frequencies of
the land cover types in the grid:

Dist ¼ ∑
i
∑
j
H1 i; jð Þ−H2 i; jð Þj j ð5Þ

whereDist is the distancemeasure indicating the similarity between the
multi-temporal image grids.H1(i,j) andH2(i,j) stand for the frequency of
Table 7
The percentages of the changed types for the pixel-level change detection results.

Change trajectory Beijing Wuhan

Soil → buildings 28.9% (84.7 ha) 6.1% (82.1 ha)
Buildings → soil 55.6% (163.2 ha) 34.3% (458.1 ha)
Soil → grass 4.5% (13.1 ha) 40.5% (541.4 ha)
Grass → soil 10.7% (31.3 ha) 11.8% (157.3 ha)
Water → grass 0.3% (1.0 ha) 7.3% (98.2 ha)
the ith land-cover class within the jth cell, for times 1 and 2, respective-
ly. A large Dist value indicates a high degree of change at the grid level.

3.5.3. City block level landscape analysis
The city block, segmented by street networks, is the smallest admin-

istrative unit for Chinese cities. The city block landscape parameters
serve as an important data base for urban management and planning
(Leitão et al., 2012). In this study, the city block networks were derived
from OpenStreetMap (OSM), where both primary- and secondary-level
roadswere considered. The landscapemetrics include both composition
and configuration. Landscape composition is expressed as a series of
quantitative indices assessing the proportion of the land-cover classes,
whereas landscape configuration measures the arrangement, distribu-
tion, and spatial characteristic of patches (McGarigal and Marks,
1995). It should be noted that the landscape metrics were calculated
for each city block in this study.

In this research, two major landscape composition parameters were
of interest: the vegetation fraction (VF) (Berger et al., 2013; Faryadi and
Taheri, 2009; Hur et al., 2010; Leslie et al., 2010) and the building cover-
age ratio (BCR) (Heiden et al., 2012; Salomons and Pont, 2012; Yu et al.,
2010). The VF (BCR) for each block is the ratio between the area covered
by vegetation (buildings) and the total area. Please note that the indica-
tor of urban land cover in moderate-resolution images always refers to
the impervious layer (Sexton et al., 2013; Song et al., 2016), due to the
limitation of the spatial resolution, whereas high-resolution data can
be used to accurately calculate the BCR, which is more directly correlat-
ed to the urban heat island effect (Peng et al., 2011) and population dis-
tribution (Tatem et al., 2007). To date, few studies have addressed
building density change. Therefore, in this study, we aimed to investi-
gate the change of BCR at the landscape level.

Furthermore, in order tomeasure the spatial distribution of the land-
cover classes, a set of configuration metrics (Table 3) were considered,
including: 1) the patch area and edges: largest patch index (LPI), edge
density (ED), and mean and standard deviation of the patch area
(MPA and SDPA); 2) shape: mean and standard deviation of the shape
index (MSI and SDSI); and 3) aggregation:mean and standard deviation
of the nearest neighbor distance (MNN and SDMNN), patch density
(PD), and cohesion index (CI) (McGarigal et al., 2002; McGarigal and
Marks, 1995; Taubenböck et al., 2014). In this study, the considered
landscape configuration metrics were only calculated for the buildings
in each city block.

4. Results and analysis

4.1. Multi-temporal land-cover mapping

The reference data were collected by visual inspection (courtesy of
the high spatial resolution of the ZY-3 data) and additional information
from field survey. The training samples for the 2012 images included
500 randomly selected pixels for each class (Beijing or Wuhan), and
the remaining pixels were used to test the classification accuracy. No
training samples were required for the 2013 images since they could
be automatically generated by the sample migration method (Section
3.4). The test samples for the 2013 imageswere still required to validate
the accuracy of the land covermapping. The classification accuracies are
presented in Table 4. In general, the proposed framework is effective for
classifying the multi-temporal high-resolution images. The overall
Table 8
Accuracy of the hot-spot analysis.

Beijing Wuhan

Accuracy (#) Accuracy (%) Accuracy (#) Accuracy (%)

Artificial objects 74/81 91.4 259/287 90.2
Natural objects 294/332 88.6 1400/1697 82.5
All 384/413 93.0 1885/1984 95.0



Fig. 8. The hot-spot change detection results for Beijing.
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accuracy for the land-cover mapping was 85–87% for Beijing and 91–
92% for Wuhan. The correctness for the specific land-cover categories
ranged from 79% to 100%, with nearly all of the accuracies being larger
than 80%. To sum up, the proposedmulti-temporal land-cover mapping
methodwas able to guarantee the accuracy and reliability of the change
analysis.

4.2. Pixel-level change transitions

We randomly generated 30 check points for each change transition.
Theoretically, seven land-cover classes involve 42 (7 × 6) types of
change transitions. Therefore, when including the “no-change” catego-
ry, 43 categories could be defined. However, in fact, there are only six
types of change occurred in the study areas (Tables 5 and 6). Please
note that some change categories rarely happen, e.g., buildings to
water, trees to road, water to trees, and road to buildings. In addition,
some change categories were not found in either study area, e.g., soil
Fig. 9. The hot-spot change det
to trees, trees to soil, and road to soil, due to the short time span. The
overall accuracy, the Kappa coefficient, and the producer's and user's ac-
curacy for each change categorywere generated from the errormatrices
(Tables 5 and 6). The results show that reliable accuracies for the pixel-
level change detection were achieved, with the overall accuracy being
82.8% and 84.4% and the Kappa being 0.79 and 0.81, for Beijing and
Wuhan, respectively.

The proportion of each change trajectory was further analyzed
(Table 7). In Beijing, 28.9% of the changes (84.7 ha) were from soil to
buildings, and 55.6% of the changes (163.2 ha) were from buildings to
soil, indicating that the area of changes related to building demolition
was approximately twice that of the area of changes related to building
construction. On the other hand, in the case of Wuhan, a more signifi-
cant discrepancy between building construction (6.1%, 82.1 ha) and de-
molition (34.3%, 458.1 ha) was observed. Comparing the conversion
between buildings and soil in the two cities, it can be found that more
demolition activities took place in Wuhan (458.1 ha) than in Beijing
ection results for Wuhan.

Image of Fig. 8
Image of Fig. 9


Fig. 10. Vegetation fraction for Beijing.
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(163.2 ha). This phenomenon can be attributed to the urban planning
policy ofWuhan, i.e., remolding the Old City for infrastructure construc-
tion (Cheng and Zhou, 2015; Liu et al., 2015). On the other hand, a strict
policy of land developmentwas implemented in Beijing, for the purpose
of protecting Beijing Old City (Shin, 2010).

In Table 7, it can be observed that the natural changes that occurred
inWuhanweremore active than in Beijing, since the seasonal effectwas
more significant for the former, i.e., the acquisition time of the Wuhan
imagery was April 22, 2012, and August 12, 2013, but the acquisition
time of the Beijing imagery was October 11, 2012, and November 28,
2013. For instance, the conversion from soil to grass accounted for
40.5% of the total changes in Wuhan (in contrast to 4.5% in Beijing), as
the bare land observed in the non-growing season was covered by veg-
etation in the growing season.

4.3. Grid-level hot-spot analysis

The accuracy of the grid-level hot-spot change detection is assessed
in Table 8. In general, for the Beijing data set, 384 out of 413 blocks
were correctly detected (93.0%), and for Wuhan, the hot-spot detection
generated 1885 correct blocks among 1984 grids, giving a detection ac-
curacy of 95.0%. Moreover, 74 of 81 (91.4%) and 259 of 287 (90.2%)
grids were correctly identified as changes related to artificial objects for
Beijing and Wuhan, respectively. Concerning natural objects, the
Fig. 11. Vegetation fra
accuracies were 294/332 (88.6%) and 1400/1697 (82.5%) for Beijing
and Wuhan, respectively.

The result of the hot-spot change detection is depicted in Fig. 8
(Beijing) and Fig. 9 (Wuhan), where the changed areas are highlighted
by polygons. The black and white polygons are separately used to indi-
cate the hot spots related to artificial and natural changes, respectively.

The hot-spot maps can be applied to analyze andmonitor the urban
development, as well as the change patterns. In the case of Beijing, most
of the changed grids are distributed at the urban fringes, with a small
quantity of changed grids located in the urban core, due to the policy
of strict control over the land development in the downtown for the
preservation of the historical style in the pattern and shape of the Old
City (Shin, 2010). On the other hand, more changed grids occur in
Wuhan, both in the core and fringe of the city. This phenomena can be
attributed to the fact thatWuhan, a city in central China, is still at the ac-
celeration stage of urban development, involving a large amount of in-
frastructure construction, e.g., tunnels and subways (Cheng and
Masser, 2003; Cheng and Zhou, 2015). In themeantime, a large number
of old or informal settlements (e.g., urban villages (Huang et al., 2015))
have been demolished to make room for the new urban facilities.

Representative examples of the hot-spot change detection results
are provided. In the result for Beijing (Fig. 8), cases (a), (b), and (c) cor-
respond to changes of artificial objects, and (d), (e), and (f) are related
to natural objects. In order to provide land resources for real estate
ction for Wuhan.

Image of Fig. 10
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Fig. 12. Changes of the building coverage ratio for Beijing.
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development (more housing space), old buildings were removed (Fig.
8(a)). In Fig. 8(b), the alley was demolished for redevelopment since
the illegal buildings may result in security problems. Fig. 8 case (c) re-
fers to the construction of high-rise buildings to address the increasing
pressure of urban population (approximately 1million new immigrants
in Beijing during 2012–2013 (BeijingMunicipal Statistics Bureau)). As a
Fig. 13. Changes of the building
result of the seasonal effects, degraded vegetation and a shrunken lake
are presented in Fig. 8(d) and (f), respectively. A case of vegetation re-
moval for the future use of a construction site is shown in Fig. 8(e).

Likewise, in the result for Wuhan (Fig. 9), cases (a)–(d) and cases
(e)–(h) correspond to changes of artificial and natural objects, respec-
tively. Specifically, an example of building demolition is shown in Fig.
coverage ratio for Wuhan.

Image of Fig. 12
Image of Fig. 13


Fig. 14. Spatial maps of mean patch area (MPA) and mean nearest neighbor distance (MNN).
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9(a), where an industrial zone was removed to make room for the con-
struction of a residential area. In case (b), an urban village was
demolished for the further construction of high-rise buildings, to pro-
vide more housing space. Cases (c) and (d) are also related to the con-
struction of buildings. Examples for crop growth and water-level rise
caused by the seasonal effect are given in (e) and (f), respectively.
Case (g) shows the seasonal change for a patch of bare land (from soil
to weeds), which has the potential for further land development and
urban expansion. The change of water quality can also be monitored,
as shown in Fig. 9(h), where water pollution caused by the spread of
quantic plants can be observed.
Table 9
Mean values of the landscape metrics measuring the configuration of buildings.

BJ 12 BJ 13 WH 12 WH 13

LPI 13.0 11.0 34.1 32.5
ED 510.3 591.7 644.1 699.0
MPA 0.14 0.08 0.28 0.21
SDPA 0.49 0.35 0.99 0.79
MSI 1.49 1.43 1.69 1.59
SDSI 0.85 0.82 1.28 1.17
MNN 11.3 9.8 10.8 9.8
SDMNN 8.1 6.8 7.7 6.6
PD 253.8 380.9 342.0 448.9
CI 97.4 96.9 97.7 97.3
4.4. Landscape change analysis

Urban green space plays an important role in urban ecosystems. VF
at the landscape level was used to reveal the spatial distribution of
green space. In Beijing, the city blocks where parks (e.g., Haidian Park,
Yuyuantan Park, and Ditan Park) exist correspond to high VF values,
and these areas are scattered across the city (Fig. 10). The city blocks
with high VF in Wuhan include parks (e.g., Shouyi Park and Liberation
Park), the East Lake scenic area, and marshland along the Yangtze
River. Unlike Beijing, most of the blocks with higher VF in Wuhan (Fig.
11) are distributed in the scenic areas (e.g., the East Lake, parks, and
Yangtze River), and are rarely in the city center and residential areas.
This type of landscape configuration may lead to a high urban heat is-
land intensity (UHII) (Li et al., 2011).

By focusing on the BCR at the landscape level, Beijing (Fig. 12) shows
a typical radial distribution, whereas, in Wuhan (Fig. 13), most of the
blocks with high BCR are located in the Old City. Representative exam-
ples of the changes of BCR are provided (Figs. 12 and 13). Again, the
changes of BCR are associated with reclamation of the old residential
areas (Fig. 13(b) and (e)), renovation of urban villages (Figs. 12(c),
13(a), (d)), alley removal (Fig. 12(a), (d)), and building construction
for the real estate (Figs. 12(b), 13(c), (f)). Compared to the grid-based
change detection, the analysis at the landscape level is more beneficial
and convenient to the urban planning, as city block is the basic urban
management unit of China.

In addition to the landscape composition (i.e., VF and BCR), we fur-
ther analyzed the changes of the landscape configuration. A series of
landscape metrics focusing on buildings were calculated. The spatial
maps for certain metrics (i.e., MPA and MNN) are presented in Fig. 14.
The mean values for the metrics measuring the configuration of build-
ings are presented in Table 9 to show the general trend in the change
of building configuration for 2012–2013. The results reveal the follow-
ing points: The decrease of the average LPI and increase of the average
PD indicate greater fragmentation and more spatial heterogeneity of
building patches, resulting from the demolition of old residential areas
(e.g., Fig. 13(a) and (e)) and the construction of detached buildings
(e.g., Fig. 13(f)). The increase of PD resulted in larger ED. Meanwhile, a
slight decrease of the landscape shape index (MSI) indicates that the
newly constructed building patches show smaller complexity in shape
compared to the old ones. The patch area measures, e.g., MPA and
SDPA, show a decreased trend, reflecting the increment of smaller-
than-average building patches (e.g., detached and high apartments),
as shown in Fig. 13(f), or reduction of bigger-than-average building
patches (e.g., dense and compact residential areas), as shown in Fig.
13(a). MNN measures the average nearest neighbor distance between
building patches. It was found that the minimum distance between
building patches decreased by ~1.0 m during 2012–2013. SDMNN de-
creased by 1.36 and 1.10 for Beijing and Wuhan, respectively, showing
that the variation of MNN values among different building patches be-
came smaller. CI, measuringphysical connectedness of building patches,
showed a tiny reduction.
5. Discussions

5.1. Merits and limitations of the ZY-3 multi-view images

ZY-3 is China's first civilian high-resolution stereomapping satellite,
carrying triple linear cameras (forward, nadir, and backward modes).
The capacity of the in-track stereo imaging ensures consistent image

Image of Fig. 14


Fig. 15. Accuracy assessment of the nDSM: (a) an example of point clouds in a high-rise building area, with the purple circle outlining the matching errors; (b) scatter plot to depict the
accuracy of the nDSM, where the vertical and horizontal axes represent the nDSM and actual height, respectively.

Table 10
Sample number and mapping performance in different stages of the sample migration
(OA = overall accuracy).

Beijing Wuhan

(a) (a) + (b) (a) + (b) +
(c)

(a) (a) +
(b)

(a) + (b) +
(c)

Sample # 3625346 726306 4568 2888179 1206213 4345
OA 69.4 84.5 85.4 85.9 91.1 92.0
Kappa 0.61 0.81 0.82 0.83 0.89 0.90

Note: (a) unchanged, (b) reliable, and (c) representative.
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quality for the stereo pairs since the multi-view images can be acquired
in almost identical illumination and weather conditions. Moreover, the
base to height ratio of the ZY-3 satellite is designed to be 0.85–0.95,
which is appropriate for producingDSMs. Therefore, ZY-3 stereo images
are convenient for generating orthographic images and DSMs.

Image orthorectification is essential for reducing topographic effects.
For multi-temporal change analysis using high spatial resolution data, a
major difficulty or obstacle lies in the multi-temporal heterogeneity of
the data, e.g., spatial mis-registration, parallax distortion for high archi-
tectures, and different viewing angles (Stumpf et al., 2014). Courtesy of
themulti-view images of ZY-3, orthorectification can be conductedwith
stereo-photogrammetrically derived DSMs, which have a higher spatial
resolution and are hence able to produce accurate and high spatial res-
olution orthographic images for time-series comparison and analysis.

DSMs are able to provide height information. Height information
plays an essential role for urban land-covermapping and 3D citymodel-
ing (Bergen et al., 2009; Chen et al., 2009; Heiden et al., 2012; Voltersen
et al., 2014). However, in our study, although the nDSM could be
employed to identify elevated land covers (i.e., buildings and trees),
its direct application for precisely retrieving actual height values of the
urban canopy was limited due to its accuracy. We compared the esti-
mated building height derived from the nDSM and the actual height ob-
tained from the urban planning department. The results (Fig. 15(b))
show that the generated nDSM was not accurate enough to estimate
the building height (RMSE = 7.78 m). In particular, a number of build-
ings with a height larger than 50 m were underestimated. Fig. 15(a)
shows an example of point clouds in a high-building area (height
coded by color), where the purple circle outlines examples of such er-
rors. These high buildings created large disparity and occlusion in the
epipolar image space, which is usually problematic for narrow baseline
matching algorithms. For Chinese cities, the buildings for residential and
commercial use usually have a large height (for maximizing space util-
ity) and are often mixed with low and old buildings, which is a typical
urban landscape, as shown in Fig. 1. This complex 3D urban landscape
increases the difficulty of multi-view image matching.

5.2. Performance of the sample migration strategy

The sample number andmapping performance in different stages of
the sample migration were investigated (as shown in Table 10). To
guarantee a fair comparison between themapping performances, train-
ing samples with the same number (500 per class) were randomly se-
lected from the generated sample sets at different stages. From the
table, it is interesting to see that constraint (b) (i.e., reliable) plays a
key role in improving the classification since the addition of this condi-
tion can significantly raise the accuracy in both study areas, i.e., the
Kappa coefficient increased from 0.61 to 0.81 in Beijing, and from 0.83
to 0.89 in Wuhan.

In the sample migration method, a rigorous CVA threshold is
adopted in order to make sure that the migrated samples are un-
changed. In order to validate the sensitivity of mapping performance
to selection of the CVA threshold, classification using different strict
CVA thresholds (i.e., 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2) were
discussed. As can be seen in Table 11, with such strict threshold values,

Image of Fig. 15


Table 11
Mapping performance using different CVA thresholds (OA = overall accuracy).

Beijing Wuhan

Threshold 0.001 0.005 0.01 0.05 0.1 0.2 0.001 0.005 0.01 0.05 0.1 0.2

OA 86.0 85.4 85.3 84.4 84.8 84.7 91.6 92.0 91.5 90.5 90.6 90.4
Kappa 0.83 0.82 0.82 0.81 0.81 0.81 0.90 0.90 0.90 0.89 0.89 0.88
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in both study areas,mappingperformance is high and stablewith Kappa
coefficient larger than 0.81.

It should be noted that, in this study, the cloud-free images are cho-
sen. For cloud-covered images, the cloud covered samples cannot satisfy
the “unchanged” condition of the sample migration strategy, and hence
will be not considered as training samples at time 2.

5.3. Scaling analysis for the grid size

The grid size for the hot-spot detection is an important parameter.
When the specified grid size is small, some grids will be of a hybrid na-
ture and some may consist partly of streets or buildings. A small grid
size can capture the details, but it may be inadequate to characterize
the neighborhood extent (e.g., the spatial pattern and arrangement of
the land-cover classes). On the other hand, however, a larger grid can
describe adequate contextual information, but it may fail to preserve
the details. In this regard, the effect of the grid sizes was examined
Fig. 16. Comparison between the change detection accuracy (correctness) and detail (mutual
results with the smallest grid size (i.e., 24 pixels) were selected as the base image for calculati

Fig. 17. Spider chart illustrating the proportions of the different
in terms of both detection accuracy and detail preservation. The
maximum value of the grid size was set to 204 × 204 pixels, which is
roughly equal to the average size of the city blocks generated
by OpenStreetMap. In this research, four grid sizes—24 × 24, 51 × 51,
102 × 102, and 204 × 204 pixels—were considered and compared.

For the detection accuracy, the correctness of the results at different
grid sizes is shown in Fig. 16(a). Mutual information entropy (Susaki et
al., 2014), which is a direct measure of the difference between the en-
tropy for image pairs, was used to evaluate the loss of details (Fig.
16(b)). A base image is required for calculation of the mutual informa-
tion. The resultswith the smallest grid size (i.e., 24 pixels)were selected
as the base image since they had the largest information entropy. The
scaling analysis indicates that larger grid sizes (e.g., 51, 102, and
204 pixels) can generate higher correctness for the hot-spot change de-
tection. The correctness sharply increased from 24 to 51, and became
relatively stable when the size was larger than 51. On the other hand,
as expected, larger grid sizes lead to smaller mutual information
information entropy) at different grid sizes for (a) Beijing and (b) Wuhan. Note that the
on of the mutual information entropy.

land-cover types derived from ZY-3 in Wuhan and Beijing.

Image of Fig. 16
Image of Fig. 17


Table 12
Acquisition times of the ZY-3 and Landsat images for Beijing and Wuhan.

Acquisition time (Beijing) Acquisition time (Wuhan)

ZY-3 2012-10-11 2013-11-28 2012-04-22 2013-08-12
Landsat 2012-10-24 2013-11-28 2012-03-14 2013-08-08
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entropy, which signifies loss of details. Therefore, in this study, the grid
size was set to 51 pixels in terms of both detection accuracy and detail
preservation.
5.4. Comparison between Landsat and ZY-3 for detecting subtle urban
changes

The proportions of themulti-temporal land-cover compositions, ob-
tained from the high-resolution ZY-3 data, are depicted in a spider chart
form in Fig. 17. Here, it can be clearly seen that only a small amount of
changes occurred in both cities during 2012–2013. These subtle changes
may be missed by coarse- or moderate-resolution data. We therefore
chose Landsat images from Beijing and Wuhan, whose acquisition
timeswere quite close to ZY-3 (Table 12), in order to compare their per-
formances for monitoring subtle urban changes. For the Landsat change
detection, the widely used method, CVA method (Yu et al., 2016) was
adopted. Radiometric normalization between the multi-temporal data
was performed before implementing the CVA algorithm. Specifically,
the pseudo-invariant features method was employed for the radiomet-
ric normalization (Davies et al., 2016).
Fig. 18. Hot-spot change intensity derived from Z
The hot-spot change detection at the grid level was used for compar-
ison, and the change intensity maps are shown in Fig. 18. It can be seen
that the results generated by Landsat are subject to a large number of
false alarms and “salt-and-pepper” noise, whereas the results of ZY-3
are much better able to highlight the changes. Thereafter, the intensity
maps of both sensors were binarized with an automatic thresholding
strategy—minimum cross-entropy (Li and Lee, 1993)—and their accura-
cies were evaluated based on field investigation and visual interpreta-
tion of the high-resolution images (ZY-3) and Google Earth. The
quantitative accuracy comparison is provided in Table 13, where (A)
and (B) indicate the number of correctly detected changed grids
among all the detected ones, respectively, for Landsat and ZY-3. In the
case of Landsat, the correctness values are quite low, with only 34.5%
(Beijing) and 28.8% (Wuhan) of the grids being successfully identified,
andmost of the detected hot spots are false alarms. The results are con-
sistent with the phenomenon observed in Fig. 18. On the other hand,
ZY-3 correctly extracts 93.0% (Beijing) and 95.0% (Wuhan) hot spots
among all the detected ones. Moreover, it should be noted that only
40 (Beijing) and 221 (Wuhan) changed grids are successfully identified
with the Landsat data, whereas 384 (Beijing) and 1885 (Wuhan) grids
are correctly detectedwith ZY-3. This indicates that ZY-3 is able tomon-
itor subtle urban changesmore effectively, with much smaller commis-
sion errors.

The performances of ZY-3 and Landsat for change detection were
further compared by a cross-checking. Among the 384 (Beijing) and
1885 (Wuhan) changed grids that are correctly identified by ZY-3,
only 45 (11.7%) and 223 (11.8%) are captured by Landsat. On the
other hand, however, 57.5% (Beijing) and 73.8% (Wuhan) grids, which
Y-3 and Landsat data in Wuhan and Beijing.

Image of Fig. 18


Table 13
Comparison between ZY-3 and Landsat for the grid-based hot-spot change detection.

Beijing Wuhan

Accuracy
(#)

Accuracy
(%)

Accuracy
(#)

Accuracy
(%)

(A) Landsat 40/116 34.5 221/768 28.8
(B) ZY-3 384/413 93.0 1885/1984 95.0
(C) Landsat checked by ZY-3 45/384 11.7 223/1885 11.8
(D) ZY-3 checked by Landsat 23/40 57.5 163/221 73.8
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are correctly extracted from Landsat, are identified by ZY-3. This is an
evidence that a high-resolution sensor, e.g., ZY-3 (2.5 m), is essential
for precisely detecting subtle urban changes, and that Landsat data,
with a spatial resolution of 30 m, are not sensitive to most of the subtle
changes occurring in urban areas.

The change detection results generated by both sensors are visually
compared in Fig. 19, where the red and blue colors represents the hot
spots only extracted by the Landsat and ZY-3 data, respectively, and
the yellow color represents the hot spots identified by both sensors. In
the result for Beijing, cases (a) and (b) correspond to building construc-
tion. It can be observed that although both sensors identify this changed
area, the result generated by ZY-3 is more complete. Case (c) shows a
typical example of building demolition, which was successfully marked
by ZY-3 but missed by Landsat. Case (d) demonstrates a subtle urban
change, where an architecture was constructed during 2012 and 2013.
It is not surprising that this kind of change can only be captured by
Fig. 19. Visual comparison between ZY-3 an
the high-resolution ZY-3 sensor. In addition, several examples are relat-
ed to the false alarms generated by Landsat, e.g., cases (e) and (f), which
were caused by the difference in the illumination. Concerning the result
for Wuhan, both sensors can identify large-scale changes, e.g., cases (a)
and (b). However, the Landsat data fail to detect slight changes, such as
(c) and (d), associated with small-area removal and construction of
buildings. Likewise, a number of false alarms can be observed from the
Landsat result, induced by different illumination (case (e)) or variation
of the roof color (case (f)).
6. Conclusions

This research focused on the subtle variations occurring in rapidly
changing urban environments, which cannot be captured by coarse- or
moderate-resolution remote sensing data. Such small changes are criti-
cally important for urban planning, environmental assessment, econom-
ic or demographic surveying, etc. Undoubtedly, high-resolution images
are imperative for the monitoring of subtle urban changes. However,
few studies have addressed urban change detection using high-resolu-
tion data, due to their multi-temporal heterogeneity, such as spatial
mis-registration, parallax distortion for high architectures, and different
viewing angles. In this study, we filled this gap and resolved these diffi-
cult problems by the use of the multi-view satellite data obtained by
ZY-3,which is China'sfirst civilianhigh-resolution three-line array stereo
satellite (launched in January 2012). A notable advantage of the multi-
view ZY-3 satellite data is their ability to generate multi-temporal
d Landsat for urban change detection.

Image of Fig. 19
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orthographic images, which can solve the aforementioned problems,
thus making it possible to monitor urban changes at a high spatial
resolution.

In this research, we presented a multi-level framework for monitor-
ing subtle urban changes usingmulti-view ZY-3 satellite data. This new
framework was applied in two typical rapidly changing urbanized
regions—Beijing and Wuhan—to test its generality and effectiveness.
Some general conclusions can be made as follows:

1) The generation of orthographic images is a key step for avoiding the
geometrical differences between multi-temporal high-resolution
images, and for applying high-resolution data to change detection.

2) From theperspective of image interpretation, thepresentedmethod,
integrating pixel- and object-basedmultiple features and rules, is ef-
fective for the classification of high-resolution images (85–87% for
Beijing and 91–92% for Wuhan) and, hence, can guarantee the accu-
racy of the PCC. In addition, multi-temporal land-cover mapping can
be efficiently performedwith the samplemigration strategy, achiev-
ing 83–85% change detection accuracy at the pixel level and 93–95%
correctness at the grid level.

3) Pixel-level processing is able to indicate the change trajectories, but
it suffers from “salt-and-pepper” noise. Thus, the results derived
from the pixel level are further aggregated into the block level,
which can highlight the urban changes and reveal the urban devel-
opment patterns. The results demonstrated that although both cities
are megacities of China, Beijing and Wuhan showed different urban
change patterns. Wuhan remains at the period of rapid urban devel-
opment, with a large amount of infrastructure construction. Howev-
er, in Beijing, due to the policy of preserving the historical style of the
Old City, most of the changed grids were distributed at the urban
fringes, and the land development in the downtown (urban core)
was restricted. Subsequently, the landscape-level change analysis
indicated that the building patches in both cities became smaller
andmore fragmented.We also found that theminimumdistance be-
tween building patches decreased by ~1.0 m during 2012–2013.

4) We found that Landsat data (30 m) were not capable of monitoring
the subtle urban changes, due to the low detection accuracy (~30%),
compared to the ~90% achieved by ZY-3 (2.5 m). This implies that
high-resolution remote sensing images are indispensable for precise
urban change analysis.
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